

The whole FlagShip 8 manual consist of following sections:

Section Content

GEN
General information: License agreement & warranty, installation
and de-installation, registration and support

LNG
FlagShip language: Specification, database, files, language
elements, multiuser, multitasking, FlagShip extensions and
differences

FSC
Compiler & Tools: Compiling, linking, libraries, make, run-time
requirements, debugging, tools and utilities

CMD
Commands and statements: Alphabetical reference of FlagShip
commands, declarators and statements

FUN Standard functions: Alphabetical reference of FlagShip functions

OBJ
Objects and classes: Standard classes for Get, Tbrowse, Error,
Application, GUI, as well as other standard classes

RDD Replaceable Database Drivers

EXT
C-API: FlagShip connection to the C language, Extend C
System, Inline C programs, Open C API, Modifying the
intermediate C code

FS2 Alphabetical reference of FS2 Toolbox functions

QRF
Quick reference: Overview of commands, functions and
environment

PRE Preprocessor, includes, directives

SYS
System info, porting: System differences to DOS, porting hints,
data transfer, terminals and mapping, distributable files

REL
Release notes: Operating system dependent information,
predefined terminals

APP
Appendix: Inkey values, control keys, ASCII-ISO table, error
codes, dBase and FoxPro notes, forms

IDX Index of all sections

fsman

The on-line manual “fsman” contains all above sections, search
function, and additionally last changes and extensions

multisoft Datentechnik, Germany

 Copyright (c) 1992..2017
 All rights reserved

Object Oriented Database Development System,

Cross-Compatible to Unix, Linux and MS-Windows

Section OBJ

Manual release: 8.1

For the current program release see your Activation Card,
or check on-line by issuing FlagShip -version

Note: the on-line manual is updated more frequently.

Copyright

Copyright © 1992..2017 by multisoft Datentechnik, D-84036 Landshut, Germany. All rights

reserved worldwide. Manual authors: Jan V. Balek, Ibrahim Tannir, Sven Koester

No part of this publication may be copied or distributed, transmitted, transcripted, stored in a

retrieval system, or translated into any human or computer language, in any form or by any

means, electronic, mechanical, magnetic, manual, or otherwise; or disclosed to third parties

without the express written permission of multisoft Datentechnik. Please see also "License

Agreement", section GEN.2

Made in Germany. Printed in Germany.

Trademarks

FlagShip™ is trademark of multisoft Datentechnik. Other trademarks: dBASE is trademark

of Borland/Ashton-Tate, Clipper of CA/Nantucket, FoxBase of Microsoft, Unix of AT&T/USL/

SCO, AIX of IBM, MS-DOS and MS-Windows of Microsoft. Other products named herein may

be trademarks of their respective manufacturers.

Headquarter Address

 multisoft Datentechnik E-mail: support@flagship.de
 Schönaustr. 7 support@multisoft.de
 84036 Landshut sales@multisoft.de
 Germany

Phone: (+49) 0871-3300237 Web: http://www.fship.com

mailto:support@flagship.de
mailto:support@multisoft.de
mailto:sales@multisoft.de
http://www.fship.com/

 OBJ 1

OBJ: Objects and Classes

OBJ: Objects and Classes .. 1
1. Overview ... 4

1.1 Objects .. 4
1.2 Classes .. 5
1.3 FlagShip Classes Sorted By Groups ... 6
1.4 FlagShip extensions .. 8
1.5 Instance Variables ... 8
1.6 Methods ... 9
1.7 Notation ... 9

Application Class .. 10
Application Basic Class ... 10
Application Basic Class Index ... 11
Application Basic Class Properties ... 11

Application Window Class .. 16
Application Window Class Index ... 16
Application Window Class Properties ... 18

Basic Classes ... 33
Color Class ... 34
ColorPair Class ... 35
Dimension Class ... 36
Mouse Class ... 37
Point Class .. 38
Rectangle Class .. 40
Size Class ... 41
CheckBox Class .. 43

CheckBox Class Index .. 43
CheckBox Class Instantiation ... 45
CheckBox Class Properties .. 47
ComboBox Class .. 58

ComboBox Class Index ... 58
ComboBox Class Instantiation .. 61

ComboBox Class Properties ... 61
Error Class .. 62

1. Error handling strategy .. 62
2. Error Blocks and Functions ... 63
ErrorNew () ... 66
Error Class Properties... 68
ErrorBox Class .. 71

ErrorBox Class Index .. 71
ErrorBox Class Instantiation .. 72
ErrorBox Class Properties ... 72

InfoBox Class .. 73
InfoBox Class Index .. 73
InfoBox Class Instantiation .. 74
InfoBox Class Properties ... 75

OBJ 2

MessageBox Class ... 76
MessageBox Class Index .. 76

MessageBox Class Instantiation... 78
MessageBox Class Properties.. 80
TextBox Class ... 85

TextBox Class Index ... 85
TextBox Class Instantiation ... 86
TextBox Class Properties .. 86

WarningBox Class .. 87
WarningBox Class Index ... 87
WarningBox Class Instantiation .. 88
WarningBox Class Properties ... 88

Font Class ... 89
Font Class Index ... 90
Font Class Instantiation .. 91
Font Class Properties ... 92
GET Class ... 101
GETNEW() .. 102
Get Class Index .. 104
GET Instance Variables .. 106
GET Init & Status Methods ... 114
GET Editing Methods .. 117
ListBox Class .. 120

ListBox Class Index ... 120
ListBox Class Instantiation .. 123
ListBox Class Properties ... 125
MenuItem Class .. 151

MenuItem Class Index .. 151
MenuItem Class Instantiation ... 152
MenuItem Class Properties .. 153
PopUp Class ... 157

PopUp Class Index.. 157
PopUp Class Instantiation .. 159
PopUp Class Properties ... 161
TopBar Class .. 168

TopBar Class Index ... 169
TopBar Class Instantiation .. 170
TopBar Class Properties ... 171
Printer Class ... 178

Printer Class Index .. 178
Printer Class Instantiation ... 180

Printer Class Properties .. 180
Push Button Class .. 195

PushButton Class Index .. 196
PushButton Class Instantiation ... 198
PushButton Class Properties .. 200
RadioButton Class .. 210

RadioButton Class Index ... 211
RadioButton Class Instantiation.. 213

 OBJ 3

RadioButton Class Properties ... 214
RadioGroup Class ... 223

RadioGroup Class Index ... 225
RadioGroup Class Instantiation .. 227
RadioGroup Class Properties ... 229
TBROWSE Class .. 245

1. Creating an Object .. 245
2. Specifying the Columns... 245
3. Stabilizing the Display ... 246

4. Data Movement ... 247
5. Handling a User Request .. 250
6. Editing Data .. 252
Tbrowse Class Instantiation .. 253

TbrowseNew () .. 253
TbrowseArr () .. 257
TbrowseDB () .. 260
Tbrowse Class Index .. 263
Tbrowse Class Properties ... 266
TbColumn Class ... 287
TbColumnNew () ... 288
TbColumn Class Index.. 290
TbColumn Class Properties .. 291
DataServer and DBserver Class ... 296
1. Scope and Filters .. 298
2. Summary of Properties ... 299
DBSERVERNEW() and DBFIDXNEW() ... 303
DataServer and DBserver Properties ... 308
Index ... 362
Notes ... 365

OBJ 4

1. Overview

FlagShip fully supports Clipper's and VO's implementation of OOP (object oriented

programming) classes. FlagShip also provides facilities for defining and manipulating user-

defined objects as a data type. In this section, only the predefined (standard) classes (and

their compatibility to CA-Clipper and VisualObjects) are described. See section LNG.11 for a

general description of OOP (object oriented programming).

The Visual FlagShip (FlagShip release 5 and later) is heavily based on OOP classes. In fact

there are three different classes in the FlagShip library for each specific i/o operation. The

decision which class should be taken is done either by the compiler when the -io=g/t/b switch

was used, or at run-time from the system environment or via command-line switch. The run-

time setup is available in the source <FlagShip_dir>/system/initio.prg. See also section

LNG.1.2

1.1 Objects

Objects in FlagShip are complex data structures with predefined instance variables and

methods to access them. The object variable has some similarity to an array variable,

whereby the object elements contains both data and code. The data element is named

instance, and the code element is a method.

The objects themselves are passive. They never initiate an action, process a user keystroke

or overtake program control. Instead, the application controls the action by sending messages

to the object, usually by assigning values to object instances or invoking a method function.

Since the objects are stored in regular FlagShip variables, there may coexist as many objects

simultaneously, as required. The objects have the same life time, as the variable scope storing

the object.

 OBJ 5

1.2 Classes

A class is a declaration of the object structure. It contains encapsulated data and code from

the rest of your application. You may establish a tree- like hierarchy among the classes by

using inheritance, see also section LNG.2.11 and CMD.CLASS.

There are many standard, predefined classes of objects, many of them are backward

compatible to Clipper 5.x or VO:

Class Used for Backward compatible

to

Applic } Application class, instantiated in initio.prg

AppWindow }

CheckBox Check box widget handling @..GET CHECKBOX CL5.3

Color Color basic class

ColorPair Color basic class

ComboBox Combo box widget handling @..GET COMBOBOX,

LISTBOX

DbServer Database RDD CL5.3

Error Information on run-time errors FS4,CL5.2

ErrorBox Error box widget handling Alert()

Font Font basic class handling SET FONT

Get GET/READ system, user modifiable, handling

@..GET

FS4,CL5.2

InfoBox Info box widget handling InfoBox()

ListBox List box widget handling Achoice(),

@..GET LISTBOX

CL5.3,VO

MenuItem Subclass of menu structure CL5.3

MessageBox Message box widget

Mouse Mouse basic class handling Mcol(), Mrow()

Point Point basic class VO

PopUp Subclass of menu structure CL5.3

Printer Class handling printers

Prompt Class handling @..PROMPT, MENU TO

PushButton Push button widget handling

@..GET PUSHBUTTON

CL5.3,VO

RadioButton Radio button widget, handling

@..GET RADIOBUTTON

CL5.3,VO

RadioGroup Radio group widget, handling

@..GET RADIOGROUP

CL5.3,VO

Rectangle Rectangle basic class VO

Size Size basic class VO

StatusBar Status bar class handling StatBarMsg(),

StatusMessage()

TBColumn Column definitions for TBROWSE FS4,CL5.2

TBrowse Browsing table-oriented data FS4,CL5.2

OBJ 6

TextBox Text box widget

TopBar Subclass of menu structure CL5.3

WarningBox Warning box widget

In addition to the above generic and i/o classes, FlagShip provides you with predefined

database server classes (RDD), generally compatible to CA/VO (VisualObjects):

Class, RDD Used for Supports Note

DataServer inherited by other RDDs RDD specific files

DbServer standard FlagShip's RDD .dbf, .dbt, .idx

DbfIdx standard FlagShip's RDD .dbf, .dbt, .idx

AsciRdd RDD for ASCII files text file, import

Cb4cdx RDD for FoxBase, FoxPro .dbf, .fpt, .cdx *

Cb4ntx RDD for Clipper .dbf, .dbt, .ntx *

Cb4ndx RDD for dBASE III .dbf, .dbt, .ndx *

Cb4mdx RDD for dBASE IV .dbf, .dbt, .mdx *

* Note: The additional replaceable database drivers (RDD) comprise an interface for other

Xbase systems on heterogeneous networks. It is available for experimental purposes in

source code in <FlagShip_dir>/ system/RDDcb4.tar.Z, and additionally require the

CodeBase package. You may acquire Multiplatform CodeBase from Sequiter Software Inc,

or other sources.

1.3 FlagShip Classes Sorted By Groups

Application class

 Applic } Application class, instantiated in initio.prg

 AppWindow }

Basic classes

 Color Color basic class

 ColorPair Color basic class

 Dimension Dimension basic class

 Font Font basic class handling SET FONT

 Mouse Mouse basic class handling Mcol(), Mrow()

 Point Point basic class

 Rectangle Rectangle basic class

 Size Size basic class

Error class

 Error Information on run-time errors

Basic input/output

 CheckBox Check box widget handling @..GET CHECKBOX

 PushButton Push button widget handling @..GET OUSHBUTTON

 RadioButton Radio button widget handling @..GET RADIOBUTTON

 OBJ 7

 RadioGroup Radio group widget handling @..GET RADIOGROUP

 RadioButton Radio button widget handling @..GET RADIOBUTTON

 RadioGroup Radio group widget handling @..GET RADIOGROUP

Extended input/output

 Get GET/READ system, user modifiable, handling @..GET

 Prompt Class handling @..PROMPT, MENU TO

 TBrowse Browsing table-oriented data

 TBColumn Column definitions for TBROWSE

Select widgets

 ComboBox Combo box widget handling @..GET COMBOBOX, LISTBOX

 ListBox List box widget handling Achoice(), @..GET LISTBOX

Pop-up messages

 ErrorBox Error box widget handling Alert()

 InfoBox Info box widget handling InfoBox()

 MessageBox Message box widget

 TextBox Text box widget

 WarningBox Warning box widget

Menu bar, Status bar

 TopBar Subclass of menu structure

 PopUp Subclass of menu structure

 MenuItem Subclass of menu structure

 StatusBar Status bar class handling StatBarMsg(), StatusMessage()

Printer

 Printer Class handling printers

Database drivers

 AsciRdd RDD for ASCII files

 DataServer inherited by other RDDs

 DbServer standard FlagShip's RDD

 DbfIdx standard FlagShip's RDD

 Cb4cdx RDD for FoxBase, FoxPro

 Cb4ntx RDD for Clipper

 Cb4ndx RDD for dBASE III

 Cb4mdx RDD for dBASE IV

OBJ 8

1.4 FlagShip extensions

FlagShip provides you also with the facility for

• defining your own classes,

• manipulating the predefined classes by inheriting it into own class, and

• handling the user defined objects as a usual data type,

known as OOP (object oriented programming).

To create an object, or instantiate a class, you name the class followed by the instantiation

operators in braces { } , or alternatively invoke the (predefined or by compiler automatically

generated) creator function named classNameNEW followed by parameters in parentheses

() :

 <oVar> := <className> { } -or-
 <oVar> := <className> {<argumentList>} -or-
 <oVar> := <className>New () -or-
 <oVar> := <className>New (<argumentList>)

The use of the instantiation operator { } is compatible to CA/VO, whereas creating the object

via the <className>NEW() function is compatible to CA/Clipper 5.x.

When executing the creator function, or instantiating a class, the required amount of space is

allocated and assigned to a FlagShip variable, called an object variable. Thereafter, the class

and its objects are addressed by using the object variable, a send operator ":" and the

associated method or instance variable name, called a selector. See detailed description in

section LNG.2.11 and CMD.CLASS.

1.5 Instance Variables

Each instance variable has a defined place in the object structure and holds the internal object

data. The name of the instance variable is used to access its contents by means of the "send"

operator. The use of the instance variable is similar to a predefined element number of an

array when using a #define manifest.

At object creation time, the instance variables are predefined to default values (mostly NIL,

see description of each object).

There are several visibility modes of instances, specified during class declaration. Since this

section describes the predefined classes only, following references are given for the visible,

external instances only.

 OBJ 9

1.6 Methods

Methods are predefined functions to perform an action on the object. They too are accessed

by name via the send operator, and executed using the optionally given arguments. Access

and Assign are special cases of methods, which refer to non-exported instances, mostly used

as read-only and/or write-only "virtual instance variable" with optional validation checking.

They are accessed in the same way, as the instance variables.

1.7 Notation

Each instance variable or object method is referenced using the object (variable), a send

operator, and the selector, which specifies a predefined name of the instance variable or a

method. The capitalization (upper/lower case) is not significant.

Send operator: The ":" operator sends or receives messages to and from a selector of the

specified object. Such messages access a variable or perform a special object action. The

general syntax is

 <object>:<assignable instance> := <expression>

 [<value> :=] <object>:<instance>

 [<value> :=] <object>:<method> ([<argumentList>])

FlagShip checks the availability of the instance variables or methods both at compile-time as

well as at run-time. The compile-time check is possible only if class prototyping is used

(specified e.g. in the stdclass.fh file, which may be invoked from std.fh). Refer also to sections

LNG.2.11.1 and CMD.PROTOTYPE. If the instance or method is unknown at compile-time,

the slower run-time addressing is used. If the instance or method is unknown, NoiVarGet(),

NoiVarPut() or NoMethod() will be invoked if available, or otherwise a run-time error occur.

Naming convention: the names of instances (and access/assign methods) are significant up

to the first 10 characters, names of methods are significant in the full length. The capitalization

is not significant. See also LNG.2.11.4 for details.

OBJ 10

Application Class

Definitions

Application Basic Class

This class provides the basic application functionality and is supported mainly for VO

compatibility, as a superset of the App class. In FlagShip, you may instantiate _gAppWindow

(or _tAppWindow or _bAppWindow) directly instead, see also <FlagShip_dir>/system/

initio.prg.

There are three different application classes: _gApp for GUI (graphical i/o), _tApp for terminal

(curses oriented) i/o and _bApp for basic i/o. Before using any of the GUI classes, you need

to instantiate the application by _gApp{} or _gAppWindow{} first.

Note, you should use this App class in special cases only, since it will not initialize the GUI

window at all and allows basic i/o only. In the most cases, you will need additionally (or only)

instantiate the AppWindow class as well.

 OBJ 11

Application Basic Class Index

Class App = _gApp, _tApp, _bApp

Inherits from: no ancestor

Inherited by: AppWindow

Class prototype: appclass.fh

AppType ACC Returns the type of the application

Col2Pixel() METH Re-calculate column coordinates to pixels

ColSize ACC/ASS Returns or set the pixel size of one column

ColSizeDef() METH calculates the def size of 1 column in pixel

DesktopHeight ACC Returns the height of the used desktop in pixel

DesktopHeight() METH Set/get the height of the used desktop in units

DesktopWidth ACC Returns the width of the used desktop in pixel

DesktopWidth() METH Set/get the width of the used desktop in units

DesktopSize() METH Returns the height and width of desktop

DesktopXDpi ACC Returns desktop horiz. DPI (dot/pixel per inch)

DesktopYDpi ACC Returns desktop vertical DPI (dot/pixel per inch)

DesktopSizeAvail() METH Returns the height and width of available desktop

Font ACC/ASS Returns or set the default application font obj

FontWindow ACC/ASS Returns or set the default window font object

Init() Creator For internal purposes only

Pixel2Col() METH Re-calculate given pixels to column coordinates

Pixel2Row() METH Re-calculate given pixels to row coordinates

PrgArgs() METH Returns an array containing the given arguments

Row2Pixel() METH Re-calculate given row coordinates to pixels

RowSize ACC/ASS Returns or set pixel size (height) of one row

RowSizeDef() METH calculates the default size of 1 row in pixel

Application Basic Class Properties

_gApp { } ─> oApp CREATOR

_bApp { } ─> oApp CREATOR

_tApp { } ─> oApp CREATOR

_gAppNew () ─> oApp CREATOR, alternative syntax

_bAppNew () ─> oApp CREATOR, alternative syntax

_tAppNew () ─> oApp CREATOR, alternative syntax

Instantiates the basic GUI application functionality. Note, you may instantiate an

application only once, so use either _gApp{} for GUI or _bApp{} for basic i/o or _tApp{}

for terminal i/o, you may determine the currently used environment via the standard

IsGuiMode() function. See example in AppWindow class.

OBJ 12

oApp:AppType ─> cType ACCESS

Returns or type of this application object: G = GUI, B = basic, T=terminal i/o, or "-" on

error.

oApp:PrgArgs() ─> aArgs

Returns an array containing the name of the executable and the given

arguments/parameters at startup. The command line parameters are splitted in

elements of the array, all of type character. If no additional parameters were given,

the array contains one element with the name of the executable only. To determine

the number of given parameters, use: len(oApp:PrgArgs())-1, see also example in

AppWindow class.

oApp:ColSize ─> iSize ACCESS

oApp:ColSize := iSize ASSIGN

Returns or set the pixel size (width) of one column. This value is automatically

calculated at the time of gAppWindow instantiation or reset when a new font is

assigned. To be able to handle the whole character set size, the value is set to the

maximal char width of the current font, see also gFont:Width() for details. You may

re- calculate the required char size by e.g.

oApp:Font := gFont { "Times", 12 }
? "current default column size = ", oApp:ColSize
oApp:ColSize := oApp:Font:WidthMaxChar("45890_AEGMQSTWXZ")
?? " using = ", oApp:ColSize

which sets the default font to "Times" and its largest alphanumeric character width to

be used as an average column size, instead if the largest font character used per

default, which mostly is larger. See also examples in the AppWindow and Font class.

oApp:DesktopHeight ─> iVertPixelSize ACCESS

Returns the height (vertical size) of the used desktop in pixel, i.e. 1200 if the current

display mode is 1600x1200. This is a shortcut for the equivalent iVertPixelSize :=

DesktopHeight(UNIT_PIXEL)

oApp:DesktopHeight([unit],[userSize]) ─> nSize

Returns the height (vertical size) of the used desktop size in units, and/or sets the

user specified desktop height.

<unit> is either numeric value (UNIT_ROWCOL, UNIT_PIXEL, UNIT_MM, UNIT_CM,

UNIT_INCH) or logical (.T. = pixel, .F. = rows). If not specified, current SET COORD

UNIT is used (default is UNIT_ROWCOL).

 OBJ 13

<userSize> is optional new user-defined value in <units>. You may set different

desktop height values for rows, pixel and mm. The cm and inch values are

related to mm and supported for your convenience.

Returns : current desktop height in <units> (before new setting, if <userSize> was

specified). Zero or -1 is returned on error.

The desktop height in pixel, mm and rows are used also internally for conversion

between different units (pixels, rows, mm, cm and inches). These values are

determined by system call, but in some operating systems or virtual machines, some

of these values may be inaccurate or not available at all (the returned value is <= 0).

If required, you may fix/set it manually by corresponding assignment of <userSize>.

The new value(s) is/are then taken for the returned value and corresponding unit

conversion. Zero or negative <userSize> value disables the user setting and triggers

again system call at next invocation.

Valid only for GUI environment, i.e. when the Xserver (on Unix) is already running, or

when the application is started in MS-Windows environment.

oApp:DesktopWidth ─> iHorizPixelSize ACCESS

Returns the width (horizontal size) of the used desktop in pixel, i.e. 1600 if the current

display mode is 1600x1200 Valid only for GUI environment, i.e. when the Xserver (on

Unix) is running or when invoked in MS-Windows environment.

oApp:DesktopSize([lPixel]) ─> aRowCol

Returns an array with two numeric values containing the height and width of desktop.

If <lPixel> if true(.T.), the returned row and column data are in pixel, i.e. in the most

cases equivalent to oApp:DesktopHeight and :DesktopWidth. If <lPixel> is false (.F.),

the data are in row/col coordinates, otherwise the current SET PIXEL is used.

oApp:DesktopSizeAvail([lPixel]) ─> aRowCol

Returns an array with two numeric values containing the height and width of the

available desktop size. In some operating systems, where determinable, this size

may be smaller than :DesktopSize() considering the reduced physical desktop size

by the window taskbar etc. If <lPixel> is true(.T.), the returned row and column data

are in pixel, if <lPixel> is false (.F.), the data are in row/col coordinates, otherwise the

current SET PIXEL is used.

oApp:DesktopXDpi ─> iPixel ACCESS

Returns the horizontal resolution of the desktop device, in dots per inch (in fact, in

pixel per inch), that is used when computing font sizes width and for recalculation of

pixel coordinates to LPI for printer output. Apply for GUI mode only. For terminal and

basic i/o, the returned value is 0.

OBJ 14

oApp:DesktopYDpi ─> iPixel ACCESS

Returns the vertical resolution of the desktop device, in dots per inch (in fact, in pixel

per inch), that is used when computing font sizes height and for recalculation of pixel

coordinates to LPI for printer output. Apply for GUI mode only. For terminal and basic

i/o, the returned value is 0.

oApp:DesktopXmm ─> nSizeXmm ACCESS

Returns the horizontal size of the desktop device in mm. Apply for GUI mode only.

For terminal and basic i/o, the returned value is 0. Note that this value is returned

from the system API self, and may be inaccurate on some systems, or with generic

desktop driver, or with VM (virtual machine).

oApp:DesktopYmm ─> nSizeYmm ACCESS

Returns the vertical size of the desktop device in mm. Apply for GUI mode only. For

terminal and basic i/o, the returned value is 0. Note that this value is returned from

the system API self, and may be inaccurate on some systems, or with generic

desktop driver, or with VM (virtual machine).

oApp:Font ─> oFont ACCESS

oApp:Font := oFont ASSIGN

Returns or set the default application font object. See details in the gFont class

description. When a new font is assigned, the ColSize and RowSize data are re-

calculated, but not the window size which may be set by oAppWindow:DefSizes()

method thereafter.

oApp:FontWindow ─> oFont ACCESS

oApp:FontWindow := oFont ASSIGN

Returns or set the default application font object, used mainly for window frames and

for message boxes (like Achoice(), InfoBox() and other widgets) without specified

font.

oApp:RowSize ─> iSize ACCESS

oApp:RowSize := iSize ASSIGN

Returns or set the pixel size (height) of one row. This value is automatically calculated

at the time of gAppWindow instantiation or reset when a new font is assigned

corresponding to the gFont:LineHeight, see details in the Font class description.

 OBJ 15

oApp:col2pixel(expN1) ─> iColPix
oApp:row2pixel(expN1) ─> iRowPix

These methods are for your convenience and are equivalent to standard functions

Col2pixel(9 and Row2pixel(). They re-calculate the given row/column coordinates

(also a fraction of) to pixels, independent on the SET PIXEL setting. Argument:

<expN1> the column or row coordinates respectively which should be converted to

pixels.

Returns : the <expN1> multiplied by oAppWindow:ColSize or oAppWindow:

RowSize and rounded to integer.

oApp:pixel2col(expN1) ─> nCol
oApp:pixel2row(expN1) ─> nRow

These methods are for your convenience and are equivalent to standard functions

Pixel2col() and Pixel2row(). They re-calculate the given pixels to row/column

coordinates, independent on the SET PIXEL setting. Argument:

<expN1> the pixel value which should be converted to column or row respectively.

Returns : the <expN1> divided by oAppWindow:ColSize or oAppWindow: RowSize

and rounded to three decimal places.

OBJ 16

Application Window Class

The Application Window is usually the top-most class in FlagShip and defines the main window

of the application. It is per default instantiated automatically, and assigned to global constants

oApplic and oAppWindow, see the user modifiable functions _<g|b|t>InitIo() in

<FlagShip_dir>/system/initio.prg. You may freely use (access) both of them in your

application.

Compatibility: The AppWindow class is a superset of AppWindow and TopAppWindow classes

of VO. As opposite to VO where the AppWindow is a virtual class and the TopAppWindow

inherits it, is the AppWindow in FlagShip a real class. The TopAppWindow is supported in

FlagShip too, but for compatibility purposes only.

Application Window Class Index

Class AppWindow = _gAppWindow, _gAppWindow, _gAppWindow

Inherits from: App

Inherited by: TopAppWindo

w

Class prototype: appclass.fh

Constants, manifests: applic.fh

ApplicFont ACC Default window font object

AppType ACC Returns the type of the application

Attrib ACC/ASS Returns or sets the mode of the applic window

Caption ACC/ASS Returns/set the text displayed in the title bar

ColorBackground ACC/ASS Returns/set the standard window background

color

ColorRgbBackground ACC/ASS Returns/set the standard window background

color

ColSize ACC/ASS Returns or set the pixel size of one column

Col2Pixel() METH Re-calculate column coordinates to pixels

CurrSize() METH Returns the current application window sizes

CurrWinID() METH Returns current screenID

DefSize() METH Sets/returns the default applic window sizes

DesktopHeight ACC Returns the height of the used desktop in pixel

DesktopWidth ACC Returns the width of the used desktop in pixel

Display() METH (Re-) Displays the application window

EnableHorizontalScroll() METH Enable/disable horizontal scroll bar

EnableVerticalScroll() METH Enable/disable vertical scroll bar

ErrorMessage() METH Display error box, equivalent to ALERT()

Font ACC/ASS Returns/set the default application font object

Font() METH Same as the Font access/assign

 OBJ 17

FontApply() METH Set the current ::font as application font

Handle() METH Returns the handle of the application window

Hide() METH Hide this window so it is not visible

IsMdi() METH Returns .T. for MDI application, .F. for SDI

KeyboardFocus() METH get current or restore keyboard focus

Mcol() METH Get mouse position on user window

McolApp() METH Get mouse position on applic window

MouseAppTrap() METH Set mouse trapping on/off

MouseTrap() METH Set mouse trapping on/off

Move() METH Moves the application window to new position

Mrow() METH Get mouse position on user window

MrowApp() METH Get mouse position on applic window

NotifyAll ACC/ASS user code block, executed for all events

NotifyClose ACC/ASS user code block, executed on closing the applic

NotifyMdiClose ACC/ASS user code block, executed on closing the MDI

NotifyMove ACC/ASS user code block, executed on window movement

NotifyResize ACC/ASS user code block, executed on window resizing

Pixel2Col() METH Re-calculate given pixels to column coordinates

Pixel2Row() METH Re-calculate given pixels to row coordinates

PrgArgs() METH Returns an array containing the given arguments

ProcessEvents() METH Process pending events for a given time

Resize() METH Resizes the application window

Row2Pixel() METH Re-calculate given row coordinates to pixels

RowSize ACC/ASS Returns or set pixel size (height) of one row

RowSizeDef() METH Calculates the default size of 1 row in pixel

SetFixSize() METH Set fix sized application window

Show() METH Show minimized/maximized/normal

StatusBar ACC Returns the StatusBar object

Style ACC/ASS Returns or set the common Look and Feel

WinData() METH Returns an array containing window data

OBJ 18

Application Window Class Properties

_gAppWindow { [exp1...exp7] } ─> oAppWindow CREATOR

_bAppWindow { [exp1...exp7] } ─> oAppWindow CREATOR

_tAppWindow { [exp1...exp7] } ─> oAppWindow CREATOR

_gAppWindowNew ([exp1...exp7]) ─> oAppWindow CREATOR, altern syntax

_bAppWindowNew ([exp1...exp7]) ─> oAppWindow CREATOR, altern syntax

_tAppWindowNew ([exp1...exp7]) ─> oAppWindow CREATOR, altern syntax

Instantiates the GUI application functionality, which includes the application window

(including scroll bars, menu's etc.) and the user window in SDI or MDI mode at given

coordinates and with the given or default window size. This class is for GUI (graphical

interface) environment only. For other environment, use either _bAppWindow{} for

basic i/o or _tAppWindow{} for terminal i/o. You may determine the currently used

environment via the standard IsGuiMode() function.

Note, you may instantiate an application only once, so if you have already instantiated

gApp class, you need to pass the used gApp object as the 1st parameter. This class

is usually instantiated and assigned to a global constant oAppWindow in the user

modifiable InitIo() function, which is called automatically at start-up of the FlagShip

application just before other INIT functions or procedures or the main .prg module is

invoked. The source code of InitIo() is available in the <FlagShip_dir>/system/

initio.prg file.

Arguments (all optional):

<expO1> : Owner (parent) object of the application. If you have already instantiated

gApp class, you need to pass the used gApp object in this parameter. If the

gAppWindow is instantiated alone as a top- most object, pass NIL (or no entry)

instead.

<expN2> : horizontal coordinate (row) of the application window (top left edge) in

either pixel coordinates or rows, depending on current SET PIXEL setting. Note,

the default SET PIXEL is OFF for a backward compatibility, so the default entry

is the row number, also as a decimal fraction. The horizontal pixel position is

determined from the default window font. If not given, 0 is the default. May be

changed by oAppWindow:DefSize()

<expN3> : vertical coordinate (column) of the application window (top left edge) in

either pixel coordinates or columns, depending on SET PIXEL setting. If not

given, 0 is the default. May be changed by oAppWindow:DefSize()

<expN4> : vertical size of the application window (pixels or rows, see above). If not

given, the size is calculated to fit 25 rows when using the default font. May be

changed by oAppWindow:DefSize()

 OBJ 19

<expN5> : horizontal size of the application window (pixels or rows, see above). If

not given, the size is calculated to fit 80 columns when using the default font.

May be changed by oAppWindow:DefSize()

<expC6> : string with the title of the application, displayed at the top bar. If not given,

the name of the application is used. May be retrieved or changed by

oAppWindow:Caption later.

<expN7> : attributes specifying the appearance of the application window. The

attributes are specified in the applic.fh header file, the default setting is

APP_SDI + APP_ALLBARS + APP_SBAR_AUTO which means: SDI (single

document interface) behavior, menu bar, status bar, tool bar and tool tips are

enabled, automatic horizontal and vertical scroll bars. These settings (except

the SDI or MDI mode) can also be changed later.

The instantiation does not display the window yet, to be able to customize your

application window by invoking of oAppWindow methods. To display the window, use

the ::Display() or ::Show() methods. Life time of the object and application: when the

last instantiated object of the _?AppWindow class is destroyed, the application will

automatically terminate. This is usually not the case when setting it as public constant

in InitIo(), where the application terminates at the usual QUIT command or RETURN

from the main .prg module.

Example 1: instantiation of gAppWindow (done in initio.prg):

 oAppWindow := _gAppWindow { }
 oAppWindow:Display()

Example 2: instantiation of gApp and then gAppWindow:

 if ! IsGuiMode()
 ? "-- sorry, cannot start GUI application, invoke startx first"
 quit
 endif

 oApp := gApp { } // instantiate gApp class first
 ? "desktop size = ", Ltrim(oApp:DesktopHeight), "x", ;
 Ltrim(oApp:DesktopWidth)
 ? "start-up parameters (including the executable name): "
 aeval(oApp:PrgArgs(), {|x| qqout("'" + x + "' ") })
 if len(oApp:PrgArgs()) <= 2
 ? "sorry, I need at least the two first command line parameters"
 ?
 quit
 endif
 oAppWindow := _gAppWindow { oApp } // now, instantiate the class
 oAppWindow:Display()

OBJ 20

oAppWindow:Attrib ─> iUsedMode ACCESS

oAppWindow:Attrib := iUsedMode ASSIGN

Returns or sets the binary or-ed mode of the application window (GUI mode), set

during the instantiation or by oAppWindow:Enable*Scroll(). For setting the attributes,

you may add or BinOR() the constants from applic.fh, the new attributes overrides

the old one. When redefining the SDI to MDI and vice versa, the old user window(s)

are closed and destroyed. You can determine the single settings by BinAND() the

returning value with the attributes from the applic.fh header file, e.g.

 local iMode := oApp:Attrib
 ? "this is a", if(BinAND(iMode, APP_MDI), "MDI", "SDI"), ;
 "based application"
 ? "the toolbar is", if (BinAND(iMode, APP_TOOLBAR), "", "not "), ;
 "enabled"

oAppWindow:Caption ─> cTitle
ACCESS

oAppWindow:Caption := cTitle ASSIGN

Returns or set the caption (title), i.e. the text displayed in the title bar of the application

window (GUI mode). The default is the name of the executable.

oAppWindow:ColorBackground ─> cColor ACCESS

oAppWindow:ColorBackground := cColor ASSIGN

Returns or sets the standard background color. The default value is set at application

start and corresponds to main window background color in GUI mode, or "N"

otherwise. This value is used when "?" is available in the color specification.

<cColor> is character string in SET COLOR notification, i.e. either combination of

"N,W,R,G,B,+" symbols or as RGB string "#RRGGBB" where RR, GG and BB

are hexadecimal values (00 to FF) specifying the triplet color.

oAppWindow:ColorRgbBackground ─> aRgbValue ACCESS

oAppWindow:ColorRgbBackground := aRgbValue ASSIGN

Returns or sets the standard background color. The default value is set at application

start and corresponds to main window background color in GUI mode, or {0,0,0}

otherwise. This value is used when "?" is available in the color specification. This

property corresponds to :ColorBackground and is provided for convenience to set or

return color via RGB triplet.

<aRgbValue> is an array of three numeric elements in the range of 0 to 255

specifying each color triplet {red,green,blue}

 OBJ 21

oAppWindow:CurrSize(expN1, [expL2]) ─> nValue

Retrieves the current application window sizes (GUI mode). Arguments:

<expN1> : is a constant (specified in the applic.fh header file) representing the

request mode:

APP_Y_TOP = return top edge of the window in rows coordinates or a vertical pixel size

(see also <expL2>)

APP_X_TOP = return left edge of the window in columns coordinates or a horizontal pixel

size

APP_Y_SIZE = return vertical size of the application window (pixels or rows)

APP_X_SIZE = return horizontal size of the application window (pixels or columns)

APP_Y_USER = on visible window only: return vertical size of the inner part of the

application window (pixels or rows)

APP_X_USER = on visible window only: return horizontal size of the inner part of the applic

window (pixels or columns)

The *_SIZE is the outlined box size, the *_USER values represents the inner canvas

of the application window, used for the MDI or SDI window. The _USER value is

computed from the outer size *_SIZE and the window attributes (enabled/disabled

menu bar, tool bar, scroll bar, status bar etc.).

<expL2> : (optional) if not specified or is NIL, the returned values represents the

row/cols or pixels, depending on the current state of SET PIXEL on/OFF. If

specified .T., the returned values are in pixels. If specified .F., the returned values

are in row/col coord.

Returns the requested value according to <expN1> and <expL2>, or -1 on error. On

program start-up, the windows coordinates are set to defaults or to by

oAppWindow:DefSize() specified values, so e.g. oAppWindow:CurrSize

(APP_Y_TOP) == oAppWindow:DefSize() [APP_Y_TOP]. When the user

resizes or moves the window by a mouse, the current coordinates and size

changes, whereby the current values can be determined by this method and

may differ from the program defaults.

See also oAppWindow:DefSize(), oAppWindow:NotifyMove,

oAppWindow: NotifyResize, oAppWindow:Attrib, oAppWindow:WinData()

OBJ 22

oAppWindow:DefSize([expA1], [expL2]) ─> aOldSize

Sets and/or returns the default application window sizes (GUI mode). The optional

<expA1> argument is an array of numeric (or NIL) elements, representing

[1 = APP_Y_TOP] default top edge of the window in rows or vertical pixel coordinates (see

also <expL2>)

[2 = APP_X_TOP] default left edge of the window in columns or horizontal pixel

coordinates

[3 = APP_Y_SIZE] default vertical size of the application window (pixels or rows)

[4 = APP_X_SIZE] default horizontal overall size of the application window (pixels or

columns)

[5 = APP_Y_MIN] minimal allowed vertical size of the application window (pixels or rows).

[6 = APP_X_MIN] minimal allowed horizontal size of the application window (pixels or

columns)

[7 = APP_Y_MAX] maximal allowed vertical size of the application window (pixels or rows)

[8 = APP_X_MAX] maximal allowed horizontal size of the application window (pixels or

columns)

The constants representing the array elements are specified in the applic.fh header

file.

The *_TOP and *_SIZE values are used when oAppWindow:Display() is executed for

the first time. When the user resizes or moves the window by a mouse, the current

coordinates and size will not match to these defaults; the current values can be

determined by oAppWindow:Curr- Size(). You may programmatically re-move or re-

size the window to these defaults by using e.g.

 oAppWindow:Move(oAppWindow:DefSize()[1], oAppWindow:DefSize()[2])

and/or

 oAppWindow:Resize (...)

methods at any time.

The *_MIN and *_MAX values restricts both the user and the program not to re-size

the window below or beyond these values. On attempt to under/oversize the window,

its size is corrected automatically to the allowed minimum or maximum. If the

<expA1> argument is not specified or is NIL, only the current default values are

returned. If the array element of <expA1> is not numeric type, out of range, or if the

array size is shorter, the corresponding element remains unchanged.

<expL2>: is an optional logical value. If not specified or is NIL, the given and returned

values represents the row/cols or pixels, depending on the current state of SET

PIXEL on/OFF. If specified .T., the given and returning values are in pixels. If

specified .F., the given and returning values are in row/col coordinates.

Returns: an array of 8 numeric elements in the same order of <expA1> with the

default settings (determined at the time of the method entry) in either row/column

or pixel values, depending on the current SET PIXEL setting or the <expL2>

value. If the coordinates or sizes were changed by <expA1>, the application

window is moved or resized accordingly.

 OBJ 23

In Terminal i/o mode (-io=t), the values cannot be translated to row/col, therefore

elements 1...4 are always in pixel.

Example 1: set the topmost window position and minimal horizontal size in pixel:

 oAppWindow:DefSize({20, 50, NIL, NIL, NIL, ;
 oAppWindow:DesktopWidth-200}, .T.)
 oAppWindow:Display()

Example 2: set the max available window height to desktop size:

 #include "applic.fh"
 local aDefa := array(APP_ROWCOL_ARR)
 aDefa[APP_ROWS_MAX] := m->oApplic:DesktopHeight -120
 aDefa[APP_COLS_MAX] := min(m->oApplic:DesktopWidth, ;
 Col2Pixel(80) + 40)
 aDefa[APP_ROWS_AVAIL] := aDefa[APP_ROWS_MAX]
 aDefa[APP_COLS_AVAIL] := aDefa[APP_COLS_MAX]

 @ aDefa[APP_ROWS_MAX], 0 say " " PIXEL
 m->oApplic:DefSize(adefa, .T.)

Example 3: see also oAppWindow:Resize() and oAppWindow:SetFixSize()

oAppWindow:Display() ─> self

(Re-) Displays the application window and all used sub-windows (i.e. user windows)

in GUI mode. Ignored when the window is minimized or hidden.

oAppWindow:EnableHorizontalScroll([expNL1]) ─> lnEnabled
oAppWindow:EnableVerticalScroll ([expNL1]) ─> lnEnabled

Enable/disable/check horizontal or vertical scroll bar in an application window (GUI

mode). Note: You may use either this method, or the corresponding flag in the

<expN7> parameter during the gAppWindow instantiation.

<expNL1> is either optional logical value signaling on or off, or optional numeric value

(APP_HSBAR_ON, APP_HSBAR_OFF, APP_HSBAR_AUTO or APP_VSBAR_ON,

APP_VSBAR_OFF, APP_VSBAR_AUTO) whereby the constants are defined in the

applic.fh file. If the parameter is not specified or is invalid, only current setting is

returned. The return value <lnEnabled> depends on the <expNL1> parameter:

if logical, the current on/off status is returned as logical value (.T. signals "always

enabled" scrollbar), otherwise numeric value APP_HSBAR_* or APP_VSBAR_*

signals the current state.

OBJ 24

oAppWindow:ErrorMessage(expC1, [expN2], [expNCA3], [...]) ─> nChoice

Display a message in an error box. This method is equivalent to the ALERT(expC1,

expA2) standard function. The arguments are equivalent to those of MessageBox

class:

<expC1> : The description text to be displayed in the error box.

<expN2> : Type of the message box. One of the constants MBOX_INFO,

MBOX_WARNING, MBOX_ERROR, MBOX_QUEST or MBOX_NONE from dialog.fh,

specifying the type of the box and the used icon. If omitted, MBOX_WARNING is

the default here.

<expNCA3> : Type and caption of the used push button(s). Either numeric

constant(s) or a string or an array with numeric or character elements specifying

the response buttons. If not specified, a single "OK" option is presented.

<expC4>...<expO6> according to the MessageBox class are supported as well.

Returns: a numeric value indicating which option was chosen, same as

MessageBox:Exec() .

oAppWindow:Font([expO1]) ─> oFont

Returns or set the default application font object (GUI mode). This method is for your

convenience only and is equivalent to oAppWindow:Font Access/Assign.

<expO1>: If specified, this font object will be set as the font of the current window.

Returns: The font object used in the current window.

oAppWindow:Hide() ─> self

Hides the application window so it is not visible (GUI mode). To re-display, use

oAppWindow:Display()

oAppWindow:IsMDI() ─> lMdiMode

Returns .T. for MDI application, .F. for SDI (default). The MDI mode for Multiple

Document Interface let you open additional user windows within the same

application. Available in GUI mode only. Initialized by the -mdi compiler switch. When

the -mdi switch was not specified during the link phase, or with non-GUI applications,

the common SDI (for Single Document Interface) application mode is created.

oAppWindow:KeyboardFocus() ─> ret

Get current keyboard focus address if any. Applicable for GUI mode, ignored

otherwise. The "focus" is the current widget with input, e.g. the GET field, Prompt,

Pushbutton, Radiobutton, Listbox, Memoedit(), Achoice(), Tbrowse() etc. and is

assigned to variable <ret> if given. You may restore this focus later by passing the

<ret> variable as parameter to oAppWindow:KeyboardFocus(@ret), see below.

 OBJ 25

oAppWindow:KeyboardFocus(@exp1) ─> retL

Restore keyboard focus. Applicable for GUI mode, ignored otherwise.

<exp1> is the previously stored keyboard focus address. Pass this variable by

reference. The <exp1> variable is reset to NIL upon return, hence you can use

the return value from oAppWindow:KeyboardFocus() only once (simply repeat

it on needs); this is for security reason, see note.

<retL> signals .T. on success, and .F. on failure

Note: use this method with care, the focus may NOT be restored for already closed

or deleted widgets, otherwise segfault/protection fault may occur!

Example:

 local saveFocus as usual
 saveFocus := m->oApplic:KeyboardFocus() // save focus
 ... set focus to anything else
 ok := m->oApplic:KeyboardFocus(@saveFocus) // restore focus

oAppWindow:Move([expN1], [expN2], [expL3]) ─> self

Moves the application window to the default or a new position. Arguments (all

optional):

<expN1> : the new row number (also decimal fraction) or a vertical position of the

top left edge in pixel (depending on the current SET PIXEL setting and the

<expL3> argument). If not given, the default value from the object instantiation

or from oAppWindow: DefSizes() invocation is used.

<expN2> : the new column number (also decimal fraction) or a horizontal position of

the top left edge in pixel (depending on the current SET PIXEL setting and/or

<expL3>). If not given, the default setting from the object instantiation or from

oAppWindow:DefSizes() is used.

<expL3>: an optional logical value. If not specified or is NIL, the given values

represent the row/cols or pixels, depending on the current state of SET PIXEL

on/OFF. If specified .T., the given values are in pixels. If specified .F., the given

values are in row/col coordinates.

oAppWindow:Move(...) is designed mainly for GUI mode. It however moves also

Terminal i/o (MS-Windows only) similar to ConsoleSize(). In Linux, use xterm settings

by newfswin.

Example: center application on desktop:

 #include "applic.fh"
 if AppIoMode() == "G"
 local xDesktop := oApplic:DesktopWidth
 local yDesktop := oApplic:DesktopHeight
 local xApplic := oApplic:CurrSize(APP_X_SIZE, .T.)
 local yApplic := oApplic:CurrSize(APP_Y_SIZE, .T.)

OBJ 26

 oApplic:Move((yDesktop - yApplic) /2, ;
 (xDesktop - xApplic) /2, .T.)
 endif

oAppWindow:NotifyAll ─> cBlock ACCESS

oAppWindow:NotifyAll := cBlock ASSIGN

Event handler callback (GUI mode). Returns or set a user-supplied code block which

should handle all events not handled previously by the oAppWindow:NotifyClose,

oAppWindow:NotifyMove or oAppWindow:Notify- Resize event handler. The code

block receives three arguments: the event number (APP_EV_* according to

applic.fh), window-ID number (usually 0), and a string specifying the event origin (e.g.

"Screen" or "EventHandler" or "Tbrowse" or "WindowAbort" etc.). You may get the

event name in clear text (string) by Event2str(event_number). If the code block

returns .T. the event should be processed further by the default event handler. When

the code block return .F., the default event handler will ignore further processing of

this event. Assigning a NIL value resets this event handler.

Example:

 // print events on terminal screen (or to stderr file)
 oAppWindow:NotifyAll := ;
 { |iEvent,iWin,cWhere| myEventNotif(iEvent,iWin,cWhere) }
 ...
 FUNCTION myEventNotif(eventNo,iWin,cWhere)
 ??## time(1), "Event#" + ltrim(iEvent)+ "=" + event2str(iEvent), ;
 "occured in window#" + ltrim(iWin), "from", cWhere
 return .T. // process it

oAppWindow:NotifyClose ─> cBlock ACCESS

oAppWindow:NotifyClose := cBlock ASSIGN

Event handler callback (GUI mode). Returns or set a user-supplied code block which

handles the Applic.Window close event, sent by a mouse click on the (X) icon top

right in main window. This event is sent just before the window (hence also the

application) is closed. As with all other Notify* handlers, the code block receives the

event number (here APP_EV_CLOSE) as a parameter. The code block itself or an

UDF invoked from the code block may e.g. display an alert or message window

asking the user if the application should really be closed. If the code block return .T.,

the event is accepted and the application closed. Otherwise the attempt for closing

the window is rejected. Assigning a NIL value resets this event handler, further

APP_EV_CLOSE events are sent to the general oAppWindow:NotifyAll handler, if

any. If not so, the application is silently closed.

 OBJ 27

Example:

 oAppWindow:NotifyClose := { |iEvent| myCloseHandle(iEvent) }
 ...
 FUNCTION myCloseHandle(eventNo)
 if ALERT("Do you want to close application?", {"No", "Yes"}) == 2
 CLOSE ALL
 return .T.
 endif
 return .F.

 oAppWindow:NotifyMove ─> cBlock ACCESS

oAppWindow:NotifyMove := cBlock ASSIGN

Event handler callback (GUI mode). Returns or set a user-supplied code block which

handles the move event. This event is sent just before the window is moved by

mouse. As with all other Notify* handlers, the code block receives the event number

(here APP_EV_MOVE) as a parameter. If the code clock return .T., the event is

accepted and the application window moved. Otherwise the attempt for moving the

window is rejected. A NIL value resets this event handler, further APP_EV_MOVE

events are sent to the general oAppWindow:NotifyAll handler, if any.

oAppWindow:NotifyResize ─> cBlock ACCESS

oAppWindow:NotifyResize := cBlock ASSIGN

Event handler callback (GUI mode). Returns or set a user-supplied code block which

handles the resizing event. This event is sent just before the window is resized by

mouse. As with all other Notify* handlers, the code block receives the event number

(here APP_EV_RESIZE) as a parameter. If the code clock return .T., the event is

accepted and the application window resized, otherwise the attempt is rejected. A

NIL value resets this event handler, further APP_EV_RESIZE events are sent to the

general oAppWindow:NotifyAll handler, if any.

oAppWindow:ProcessEvents([expN1]) ─> self

Process pending events for a given time in milliseconds or until there are no more

events to process. You will usually not need to call this method from your .prg code

(although you can), since it is invoked periodically by FlagShip run-time. You only will

need to frequently call it (at least within 1-3 seconds) from a large or a time consuming

C source (which is not handled automatically by the run-time) to allow the event

manager to handle all the user events done in the meantime, like window resizing,

movement, refresh, close, key and mouse trapping etc. Argument (optional):

<expN1> : Time period or mode. If specified 0 (zero) or not given, process all pending

events but for max. 3000 milliseconds (3 sec). If > 0, process all pending events

but max for the given time period <expN1> in milliseconds. If < 0, waits for one

event to process it.

OBJ 28

For your convenience, there is a function named ProcessEvents() which perform the

same task. For source parts written in C, corresponding C callable function 'int

ProcessEvents()' and 'int ProcesEventsClock (int milliSec)' are available as well,

where the first checks only for pending output, and the second checks for output and

displays clock. The milliSec parameter is usually 3000.

oAppWindow:Resize([expN1],[expN2],[expL3],[expL4],[expL5]) ─> self

Resizes the application window to the default or a new size. See also

oAppWindow:Size for an alternative setting. Arguments (all optional):

<expN1> : the new size in rows (also decimal fraction) or a vertical size of the

application window in pixel (depending on the current SET PIXEL setting and the

<expL3> value). If not given, the default setting from the object instantiation or

from oAppWindow:defSizes() is used.

<expN2> : the new size in columns (also decimal fraction) or a horizontal size of the

application window in pixel (depending on the current SET PIXEL setting and the

<expL3> value). If not given, the default setting from the object instantiation or

from oAppWindow:DefSizes() is used.

<expL3> : an optional logical value = pixels. If not specified or is NIL, the given values

represents the row/cols or pixels, depending on the current state of SET PIXEL

on/OFF. If specified .T., the given values are in pixels. If specified .F., the given

values are in row/col coordinates. Applicable for GUI mode only.

<expL4> : an optional logical value = auto-resize. If not given or is true (.T.), the

Resize() method will increase the application window automatically so, that at

least the number of given rows and/ or columns are available and visible. With

auto-resizing, the <expN1> and <expN2> coordinates are the inner window

frame. The MaxRow() and MaxCol() will be set accordingly. Note: the auto-

resizing may produce slightly inaccurate results in some windows manager. If

<expL4> is false (.F.), the coordinates are outer application window frame and

the programmer will control the visibility manually, see example 2 and 4 below.

Best also to set MaxRow() and MaxCol().

<expL5> : an optional logical value = resize also status bar. If not given or is .T.,

the status bar items are resized accordingly to the size of the application

window. False (.F.) value permits resizing of the status bar items. Applicable for

GUI mode only.

oAppWindow:Resize(...) is designed mainly for GUI mode. It however resizes also

Terminal i/o (MS-Windows only) similar to ConsoleSize(), i.e. it may decrease current

window, but cannot increase it. In Linux, use xterm settings by newfswin.

Example 1: At application start, the window is sized to 25 rows by 80 columns, where

the size of the largest character is used (which is usually large letter like M, Q, X etc,

or semi-graphic character like chr(215)). If you wish to have smaller window, you may

resize the applic window e.g. to an average of an upper/lower letter width by:

 m->oApplic:Resize(25, StrLen2Col(replicate("Xx",40)))

 OBJ 29

Example 2: To set screen height of the whole, current desktop less 40 pixel at

bottom, and a width of 80-times the "X" character, use:

 nRows := int(Pixel2row(m->oApplic:DesktopHeight - 40 - 80))
 m->oApplic:Resize(nRows, StrLen2Col(replicate("X",80)))

or ditto manually:

 iSizeX := StrLen2pix(replicate("X",80)) + 15 // add frame
 iSizeY := m->oApplic:DesktopHeight - 40
 MaxCol(.T., StrLen2pix(replicate("X",80)))
 MaxRow(.T., iSizeY - 80) // subtract frame
 m->oApplic:Resize(iSizeY, iSizeX, .T., .F.)

where both work fine for either proportional or fixed fonts. With fixed font set, see also

the next example.

Example 3: set fixed font, resize to 25x80 rows/columns corresponding to the used

font

 SET FONT "courier" SIZE 12

 m->oApplic:Resize(25, 80) // auto-resize

 // display test grid
 line80 := "0....:....1....:....2....:....3....:...." + ;
 "4....:....5....:....6....:....7....:...."
 for ii := 0 to 24
 @ ii,0 say line80
 @ ii,0 say ltrim(ii)
 next
 m->oApplic:WinData(.T.) // display windows data on stderr
 setpos(0,0)
 wait "before exit..."

Example 4: same as example 3, but the programmer controls the visibility and have

specified also the max resizable area. Note that the window coordinates specify here

outer frame, so add frame displacement (may vary in dependence on used window

manager).

 #include "applic.fh"

 #define DISPL_Y 80
 #define DISPL_X 35

 m->oApplic:Font:FontName("courier")
 m->oApplic:Font:SizePoint(12)

 // set max app.window sizes
 aDefa := array(APP_ROWCOL_ARR)
 aDefa[APP_ROWS_MAX] := m->oApplic:DesktopHeight -50 // screen
size
 * aDefa[APP_ROWS_MAX] := Row2Pixel(25) + DISPL_Y // or 25
rows

OBJ 30

 aDefa[APP_COLS_MAX] := min(m->oApplic:DesktopWidth, ;
 Col2Pixel(80) + DISPL_X)

 @ aDefa[APP_ROWS_MAX], 0 say " " PIXEL // ensure auto-resize
 m->oApplic:DefSize(adefa, .T.) // set defaults

 // resize to 25x80
 m->oApplic:Resize(Row2pixel(25) + DISPL_Y, ;
 Col2pixel(80) + DISPL_X, ;
 .T., .F.) // manual resize
 m->oApplic:display()

 // display test grid 25x80
 setpos(0,0)
 wait "before say..."
 line80 := "0....:....1....:....2....:....3....:...." + ;
 "4....:....5....:....6....:....7....:...."
 for ii := 0 to 24
 @ ii,0 say line80
 @ ii,0 say ltrim(ii)
 next
 setpos(0,0)
 wait "before exit..."

 oAppWindow:SetFixSize(expN1, expN2, [expL3]) ─> lOk

Resizes the application window to fix size. Applicable in GUI mode only, ignored

otherwise. See also oAppWindow:Resize for an alternative setting.

<expN1> : the new size in rows (also decimal fraction) or a vertical size of the

application window in pixel (depending on the current SET PIXEL setting and/or

the <expL3> value).

<expN2> : the new size in columns (also decimal fraction) or a horizontal size of the

application window in pixel (depending on the current SET PIXEL setting and/or

the <expL3> value).

<expL3> : an optional logical value = pixels. If not specified or is NIL, the given values

represents the row/cols or pixels, depending on the current state of SET PIXEL

on/OFF. If specified .T., the given values are in pixels. If specified .F., the given

values are in row/col coordinates. Applicable for GUI mode only.

<lOk> : returns .T. on success and .F. on failure

oAppWindow:SetFixSize(...) resizes the application window to size specified by

<expN1> and <expN2>. The window cannot be resized thereafter by mouse, but only

programatically by oAppWindow:Resize(). Also the maximize [O] and minimize [o]

button at the window frame does not maximizes nor minimizes it anymore, this

however depends on the system window manager. Note that

oAppWindow:SetFixSize() do not apply for Wopen() nor MdiOpen(), these sub-

windows are not user-resizeable.

Example: At application start, the window is sized to 25 rows by 80 columns, where

the size of the largest character of current font is used (which is usually broad letter

 OBJ 31

like M, Q, X etc, or semi-graphic character like chr(215)). If you wish to have a window

of fix size, which cannot be resized by user/mouse, you may use e.g.:

 SET FONT "courier", 12
 m->oApplic:SetFixSize(25, 80)

 oAppWindow:Show([expN1]) ─> nStatus

Set and/or get the window visibility (GUI mode). Argument (optional):

<expN1> a constant defined in applic.fh that represents how the window is shown:

 APP_NORMSIZE (= SHOWNORMAL) : Shows the window on its owner (usually a

desktop), in a size before minimizing or maximizing

APP_MINSIZE (= SHOWICONIZED) : Iconize, i.e. minimize the window.

APP_MAXSIZE (= SHOWZOOMED) : Shows the window at the maximum size allowed

by its owner. The Application window occupies the whole desktop.

The window visibility will only be changed when a valid argument was passed. Note

that also the user may iconize (minimize), maximize or reset the normal window

visibility by a mouse click on the corresponding icon in the top right corner of the

window.

Returns: a constant (see <expN1>) representing the current status (at the time of

entering the method) set either by the application via this Show() method, or set

by the user via mouse click.

oAppWindow:Style ─> nStyle ACCESS

oAppWindow:Style := nStyle ASSIGN

Returns or set the appearance style, i.e. the common Look and Feel of a GUI

application. The <nStyle> constant is APP_STYLE_MOTIF (Motif alike style),

APP_STYLE_CDE (Common Desktop Environment alike) or APP_STYLE_WINDOWS

(MS-Windows alike), all defined in applic.fh file. Per default, the style corresponds to

the used environment, i.e. APP_STYLE_MOTIF in Unix and APP_STYLE_WINDOWS in

MS-Windows.

oAppWindow:WinData([expL1]) ─> aStatus

Determine and optionally print significant application window (GUI mode) data as an

extract from other oAppWindow methods, e.g. :Desktop*(), :Font*(), :CurrSize() etc.

Argument (optional):

<expL1> is a logical value. If set .T., the <aStatus> data are printed in human

readable form to stderr device.

Returns: <aStatus> is three-dimensional array describing important application

window data. The array elements corresponds to APP_WINDATA_* constants

defined in applic.fh and the sub-array in each element is a textual description,

row/height and column/width in pixel, in that order.

OBJ 32

Example 1:

 #include "applic.fh"
 aData := m->oAppWindow:WinData()
 yUserPix := aData[APP_WINDATA_USERSIZE,2] // pixel
 xUserCol := Pixel2col(aData[APP_WINDATA_USERSIZE,3]) // columns
 ? aData[APP_WINDATA_USERSIZE,1], "=", ;
 ltrim(yUserPix),"(in pixel) *", ltrim(xUserCol),"(in cols)"

Example 2: display data on screen

 aeval(m->oAppWindow:WinData(), ;
 {|x| Qout(x[1], "=", ltrim(x[2]), "/", ltrim(x[3])) })

Example 3: print data to stderr

 m->oAppWindow:WinData(.T.)

 OBJ 33

Basic Classes

These basic classes are often used to carry information for other classes.

The basic classes are:

• Color Class

• ColorPair Class

• Dimension Class

• Font Class

• Mouse Class

• Point Class

• Rectangle Class

• Size Class

OBJ 34

Color Class

creates a Color object, which is used to describe color settings via RGB values. It can contain

either the foreground or background color specification.

Class Color

Inherits from: - (none)

Inherited by: ColorPair

Class prototype: basclass.fh

Defines: color.fh

Properties of the Color Class

Color { [expNA1], [expN2], [expN3] } ─> oColor CREATOR

ColorNew ([expN1], [expN2], [expN3]) ─> oColor CREATOR, altern syntax

Instantiates a Color object by the RGB triplet values, or by RGB(0,0,0) = black. The

triplet specifies your own mix of red, green, and blue components, each can be a

value between 0 (lowest intensity) and 255 (highest intensity). Arguments (all

optional):

<expA1> : An array of three elements {red,green,blue}. If the 1st argument is

detected as array, the <expN2> and <expN3> arguments will be ignored.

<expN1> : The red component of the color in range of 0 to 255

<expN2> : The green component of the color in range of 0 to 255

<expN3> : The blue component of the color in range of 0 to 255

oColor:Blue ─> iVal ACCESS

oColor:Blue := iVal ASSIGN

Access or assign the blue triplet of the color as a value from 0 to 255

oColor:Green ─> iVal ACCESS

oColor:Green := iVal ASSIGN

Access or assign the green triplet of the color as a value from 0 to 255

oColor:Red ─> iVal ACCESS

oColor:Red := iVal ASSIGN

Access or assign the red triplet of the color as a value from 0 to 255

oColor:Rgb ([aTrippl]) ─> aTrippl METHOD

oColor:Rgb ([iRed], [iGreen], [iBlue]) ─> aTrippl METHOD

Returns or set the corresponding color. If no arguments are given, only the array of

2 numeric elements (red, green, blue) with values in the range 0 to 255 is returned.

 OBJ 35

ColorPair Class

creates a ColorPair object, containing two Color objects as a pair for foreground and

background.

Class ColorPair

Inherits from: Color

Inherited by: - (none)

Class prototype: basclass.fh

Defines: color.fh

Properties of the ColorPair Class

ColorPair { [expO1], [expO2] } ─> oColorPair CREATOR

ColorPairNew ([expO1], [expO2]) ─> oColorPair CREATOR, altern syntax

Instantiates a ColorPair objects.

<expO1> is the foreground Color object. If not given, the default is black = Color{ 0,

0, 0}

<expO2> is the background Color object. If not given, the default is white =

Color{255,255,255}

oColorPair:Background ─> oColor ACCESS

oColorPair:Background := oColor ASSIGN

Set or return the background color part of the object. Example:
? oPair:Background:Red // 127 }
? oPair:Background:Green // 127 } a gray color
? oPair:Background:Blue // 127 }

oColorPair:Foreground ─> oColor ACCESS

oColorPair:Foreground := oColor ASSIGN

Set or return the foreground color part of the object.

OBJ 36

Dimension Class

This class is provided for compatibility purposes and is equivalent to the Size class.

Class Dimension

Inherits from: Size

Inherited by: - (none)

Class prototype: basclass.fh

Defines: - (none)

oDimension := Dimension {[expN1], [expN2], [expL3]} CREATOR

oDimension := DimensionNew ([expN1], [expN2], [expL3]) CREATOR alter.syntax

See description and properties of the Size class

 OBJ 37

Mouse Class

This class is used to hold the mouse information. It is available in all i/o modes, but a

meaningful information is given in the GUI mode only.

The mouse class is instantiated automatically in the InitIo() start-up function (see

<FlagShip_dir>/system/initio.prg) to a global constant named "_oMouse" and should not be

instantiated extra.

Class Mouse = _gMouse, _bMouse, _tMouse

Inherits from: - (none)

Inherited by: - (none)

Class prototype: mouseclass.fh

Defines: - (none)

Mcol() METHOD Determine the mouse cursor's screen column position

Mhide() METHOD Hide the mouse pointer

MLeftDown() METHOD Determine the press status of the left mouse button

MPresent() METHOD Determine if a mouse is present

MRestState() METHOD Re-establish the previous state of a mouse

MRightDown() METHOD Determine the status of the right mouse button

Mrow() METHOD Determine the mouse cursor's screen row position

MSaveState() METHOD Save the current state of a mouse

MSetBounds() METHOD Define an inclusion region (*)

MSetClip() METHOD Define an inclusion region (*)

MSetCursor() METHOD Determine a mouse's visibility

MSetPos() METHOD Set a new position for the mouse cursor

MShow() METHOD Display the mouse pointer

MState() METHOD Return the current mouse state

OBJ 38

Point Class

This class is used to hold information about specific coordinate.

Class Point

Inherits from: -

Inherited by: -

Class prototype: basclass.fh

Defines: -

Properties of the Point Class

 Point { [expN1], [expN2], [expL3] } ─> oPoint CREATOR

PointNew ([expN1], [expN2], [expL3]) ─> oPoint CREATOR, altern. syntax

Instantiates a point object. Arguments (all optional):

<expN1> : The x (column) coordinate of the widget. If not given, 0 is the default. See

also oPoint:x and oPoint:x()

<expN2> : The y (row) coordinate of the widget. If not given, 0 is the default. See

also oPoint:y and oPoint:y()

<expL3> : an optional logical value. If not specified or is NIL, the given values

represent the row/cols or pixels, depending on the current state of SET PIXEL

on/OFF. If specified .T., the given values are in pixels. If specified .F., the given

values are in row/col coordinates.

oPoint:X ─> iColPixel ACCESS

oPoint:X := iColPixel ASSIGN

The x (column) coordinate of the widget in pixels. See also oPoint:X() for an

alternative syntax.

oPoint:X([expN1], [expL2]) ─> nColumn

Set and/or return the x (column) coordinate of the widget. Arguments (optional):

<expN1> : The x (column) coordinate of the widget. If not given or is NIL, the X value

remain unchanged and only the current size is returned.

<expL2> : an optional logical value. If not specified or is NIL, the <expN1> and

<returnN> represents a value either in row/cols or in pixels, depending on the

current state of SET PIXEL on/OFF. If specified .T., the given and returned value

is in pixels (and thus equivalent to oPoint:X acc/ass). If specified .F., the given

and returned value is in row/col coordinates.

 OBJ 39

<returnN> : The x (column) coordinate of the widget at the time of entering this

method, either in pixel or col/row coordinates, depending on <expL2> argument.

oPoint:Y ─> iRowPixel ACCESS

oPoint:Y := iRowPixel ASSIGN

The y (row) coordinate of the widget in pixels. See also oPoint:Y() for an alternative

syntax.

oPoint:Y([expN1], [expL2]) ─> nRow

Set and/or return the y (row) coordinate of the widget. Arguments (optional):

<expN1> : The y (row) coordinate of the widget. If not given or is NIL, the Y value

remain unchanged and only the current size is returned.

<expL2> : an optional logical value: If not specified or is NIL, the <expN1> and

<returnN> represents a value either in row/cols or in pixels, depending on the

current state of SET PIXEL on/OFF. If specified .T., the given and returned value

is in pixels (and thus equivalent to oPoint:Y acc/ass). If specified .F., the given

and returned value is in row/col coordinates.

<returnN> : The x (column) coordinate of the widget at the time of entering this

method, either in pixel or col/row coordinates, depending on <expL2> argument.

OBJ 40

Rectangle Class

This class is used to hold information about specific coordinate.

Class Rectangle

Inherits from: -

Inherited by: -

Class prototype: basclass.fh

Defines: -

Bottom ACC/ASS The bottom coordinate in pixel

Bottom() METHOD The bottom coordinate in pixel or rows

Height ACC/ASS The height size in pixel

Height() METHOD The height size in pixel or rows

Left ACC/ASS The left coordinate in pixel

Left() METHOD The left coordinate in pixel or columns

Right ACC/ASS The right coordinate in pixel

Right() METHOD The right coordinate in pixel or columns

Top ACC/ASS The top coordinate in pixel

Top() METHOD The top coordinate in pixel or rows

Width ACC/ASS The width size in pixel

Width() METHOD The width size in pixel or rows

X ACC/ASS The left coordinate in pixel

X() METHOD The left coordinate in pixel or columns

Y ACC/ASS The top coordinate in pixel

Y() METHOD The top coordinate in pixel or rows

oRect := Rectangle { [expN1],[expN2],[expN3],[expN4],[expL5] } CREATOR

oRect := RectangleNew ([expN1],[expN2],[expN3],[expN4],[expL5]) CREATOR

Instantiate Rectangle object.

<expN1>...<expN4> are top, left, bottom, right coordinates in that order. If not

specified, 0/0 is used for top/left and maxrow()/ maxcol() for bottom/right. If

<expN3> is negative, it specifies the height instead of bottom. If <expN4> is

negative, it specifies the width instead of right.

<expL5> an optional logical value. If not specified or is NIL, the given values

represent the row/cols or pixels, depending on the current state of SET PIXEL

on/OFF. If specified .T., the given values are in pixels. If specified .F., the given

values are in row/col coordinates.

 OBJ 41

Size Class

Specifies a size of an object

Class Size

Inherits from: -

Inherited by: Dimension

Class prototype: basclass.fh

Defines: -

 oSize := Size { [expN1], [expN2], [expL3] } CREATOR

oSize := SizeNew ([expN1], [expN2], [expL3]) CREATOR alter.syntax

Instantiates a Size (or Dimension) object. Arguments (all optional):

<expN1> : The width (x size) of the widget. If not given, 0 is the default. See also

oSize:Width and oSize:Width()

<expN2> : The height (y size) of the widget. If not given, 0 is the default. See also

oSize:Height and oSize:Height()

<expL3> : an optional logical value. If not specified or is NIL, the given values

represent the row/cols or pixels, depending on the current state of SET PIXEL

on/OFF. If specified .T., the given values are in pixels. If specified .F., the given

values are in row/col coordinates.

oSize:Height ─> iHeightPixel ACCESS

oSize:Height := iHeightPixel ASSIGN

The height (y size) of the widget in pixels. See also oSize:Height() method for an

alternative syntax.

oSize:Height([expN1], [expL2]) ─> nHeight

Set and/or return the height (y size) of the widget. Arguments (optional):

<expN1> : The height of the widget. If not given or is NIL, the value remains

unchanged and only the current size is returned.

<expL2> : an optional logical value. If not specified or is NIL, the <expN1> and

<returnN> represents a value either in row/cols or in pixels, depending on the

current state of SET PIXEL on/OFF. If specified .T., the given and returned value

is in pixels (and thus equivalent to oSize:Height acc/ass). If specified .F., the

given and returned value is in row/col coordinates.

<returnN> : The y (height) coordinate of the widget at the time of entering this

method, either in pixel or col/row coordinates, depending on <expL2> argument.

OBJ 42

oSize:Width ─> iWidthPixel ACCESS

oSize:Width := iWidthPixel ASSIGN

The width (x size) of the widget in pixels. See also oSize:Width() method for an

alternative syntax.

oSize:Width([expN1], [expL2]) ─> nWidth

Set and/or return the width (x size) of the widget. Arguments (optional):

<expN1> : The width of the widget. If not given or is NIL, the X value remain

unchanged and only the current size is returned.

<expL2> : an optional logical value. If not specified or is NIL, the <expN1> and

<returnN> represents a value either in row/cols or in pixels, depending on the

current state of SET PIXEL on/OFF. If specified .T., the given and returned value

is in pixels (and thus equivalent to oSize:Width acc/ass). If specified .F., the given

and returned value is in row/col coordinates.

<returnN> : The x (width) coordinate of the widget at the time of entering this method,

either in pixel or col/row coordinates, depending on <expL2> argument.

 OBJ 43

CheckBox Class

Create check boxes, which are widgets (controls) that can be toggled on or off by a user.

A check box allows the user to choose between 2 or 3 states. A 2-state check box allows a

choice between a checked (ON) and unchecked (OFF) state. The choice is reflected in

CheckBox:Value access, which may be TRUE or FALSE. A 3-state check box adds a third

(UNDETERMINED) state, in which the box is dimmed. The third state is indicated by

CheckBox:Value being TRUE and by CheckBox:ValueChanged (which is normally TRUE)

being FALSE. Compatibility note: Clipper supports 2-state mode only.

The CheckBox class has been designed to be easily integrated into the standard FlagShip

GET/READ system in addition to providing the necessary functionality to be utilized on its

own.

The following code creates a check box with a caption "Check me"

 oChkBox := CheckBox{30,50, "Check me", .T.}
 oChkBox:Show()

FlagShip also support the use of check boxes via the common @..GET / READ interface

 lChecked := .F.
 @ 5,10 GET lChecked CHECKBOX CAPTION "Check me"
 READ

As with other GUI classes in FlagShip, the general CheckBox class is internally inherited by

three different sub-classes: _gCheckBox for GUI based application, _tCheckBox for

terminal/text based mode, and _bCheckBox for basic i/o mode, all defined in the boxclass.fh

header file. The proper class, corresponding to the used i/o mode, is set either at compile time

with the compiler switch "-io=g|t|b", or latest at run-time depending on the currently used

environment.

Note: in the basic i/o mode, only a rough check box functionality is simulated by the sequential

in/output.

CheckBox Class Index

Class CheckBox

Inherits from: -

Inherited by: -

Class prototype: boxclass.fh

Defines: button.fh, set.fh

OBJ 44

Bitmaps ACC/ASS Available for compatibility to Clipper only

Buffer ACCESS Indicates whether the check box is checked or not

CapCol ACC/ASS Screen column of the check box's caption

CapCol() METHOD Screen column of the check box's caption

CapRow ACC/ASS Screen row of the check box's caption

CapRow() METHOD Screen row of the check box's caption

Caption ACC/ASS String that describes the check box caption

Cargo ACC/ASS A user value of any type

Checked ACC/ASS Indicates whether the check box is checked

ClassName METHOD For compatibility to Clipper's getsys.prg only

Col ACC/ASS Screen column where the check box is displayed

Col() METHOD Screen column where the check box is displayed

ColdBox ACC/ASS Frame of check box without focus

ColorSpec ACC/ASS Color attributes

Destroy() METHOD Destroys the CheckBox object

Display() METHOD Show the check box and its caption on the screen

Fblock ACC/ASS Code block evaluated at receiving/losing focus

Handler ACC/ASS User defined keyboard handler

HandlerSelect ACC/ASS Process Select() in handler or auto

HasFocus ACC Indicates whether the object has input focus

Height ACC/ASS The height of the check box

Height() METHOD The height of the check box (incl. pixel setting)

HitTest() METHOD Determines if the mouse cursor is within the box

HotBox ACC/ASS Frame of check box with focus

KillFocus() METHOD Take input focus away from a CheckBox object

Message ACC/ASS String displayed in the windows status bar

Modified ACC/ASS Indicates whether the button is clicked

Row ACC/ASS Screen row where the check box is displayed

Row() METHOD Screen row where the check box is displayed

Sblock ACC/ASS Code block evaluated at user selection

Select() METHOD Set/clear the check box checked status

SetFocus() METHOD Set input focus to a CheckBox object

Show() METHOD Activates the default or user's input handler

Style ACC/ASS Delimiter and status display characters

ToolTip ACC/ASS Short pop-up info message

TypeOut ACC Always .F.

Value ACC/ASS Indicates whether the check box is checked or not

ValueChanged ACC/ASS State of the 3-state check box

Width ACC/ASS The width of the check box

Width() METHOD The width of the check box (incl. pixel setting)

 OBJ 45

CheckBox Class Instantiation

oCheckBox := [_g|_t|_b]CheckBox { [nR], [nC], [cText], [lPixel] } [1]

oCheckBox := [_g|_t|_b]CheckBoxNew ([nR], [nC], [cText], [lPixel]) [2]

oCheckBox := CheckBox ([nR], [nC], [cText], [lPixel]) [3]

oCheckBox := CheckBox { [oOwn], [nId], [oPoint], [oDim], [cText] } [4]

Any of the above syntax instantiate new check box object. Syntax [1], [2] and [3] are

standard FlagShip and should be preferred. Syntax [4] is supported for compatibility

to VO.

The widget (control) remains invisible until you invoke oCheckBox:Show() or

oCheckBox:Display(). This allows the program to set up the control correctly (with the

correct size, position, and any other parameters), while avoiding the "visual noise" of

changing controls. Arguments:

<nR> row in coordinates or pixel, optional. If not specified, 0 is the default. See

additional details in the oCheckBox:Row description.

<nC> column in coordinates or pixel, optional. If not specified, 0 is the default. See

additional details in the :Col description.

<cText> caption text, optional. If not redefined by :CapCol and/or :CapRow, the text

is displayed in the <nR> row and <nC> + 4 column.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in

row/col coordinates, otherwise the current SET PIXEL is used.

<oOwn> owner object of the check box, optional. Default is the oApplic object.

<nId> an unique ID between 1 and 8000 of the check box, optional. If not specified,

internal ID is used.

<oPoint> the origin of the check box, in canvas coordinates

<oDim> the dimension of the check box, in canvas coordinates

Example 1: This example creates two check boxes and process different handling:

 oBox1 := CheckBox{10,5,"Male"}
 oBox2 := CheckBox(11,5)
 oBox2:Caption := "Married"

 // process all the handling automatically
 oBox1:Show()

 // handle this box manually same as in Clipper
 oBox2:Display()
 oBox2:SetFocus()
 key := inkey()

OBJ 46

 do case
 case key == K_SPACE
 oBox2:Select(!oBox:Buffer) // toggle on/off
 case chr(key) $ "+yYtT"
 oBox2:Select(.T.)
 case chr(key) $ "-nNfF"
 oBox2:Select(.F.)
 endcase
 oBox2:KillFocus()

 // display the data
 ? if(oBox1:Checked,"Male","Female"), ;
 if(oBox2:Buffer, "", "not ") + "married"

Example 2: This example creates and integrates a check box within a GetList and

activates it by performing a READ:

 LOCAL cName := SPACE(25)
 LOCAL lMarried := .T., lMale := .F.
 LOCAL cAddress := space(25)

 @ 5,10 SAY "Name " GET cName
 @ 7,10 SAY "Male " GET lMale CHECKBOX
 @ 7,20 SAY "Married " GET lMarried CHECKBOX
 @ 9,10 SAY "Address " GET cAddress
 READ
 @ 10,0 SAY trim(cName) + " is " + if(lMarried, "", "not ") + ;
 "married and is", if(lMale, "male", "female")

Example 3: see additional examples in FUN.CheckBox() and CMD.@...GET

CHECKBOX

Compatibility: Available also in CL53 (syntax 3) and VO (syntax 4). See also:

oCheckBox:Destroy()

 OBJ 47

CheckBox Class Properties

 oCheckBox:Bitmaps ─> aFile ACCESS

oCheckBox:Bitmaps := aFile ASSIGN

This property is available for compatibility to Clipper (in semi- graphical mode) only

and is not used by FlagShip.

Compatibility: Available also in CL53.

oCheckBox:Buffer ─> lChecked ACCESS

<lChecked> is a logical value that indicates whether the check box is checked or

unchecked. A value of true (.T.) indicates that it is checked and a value of false

(.F.) indicates that it is not checked. Equivalent to oCheckBox:Checked instance.

Compatibility: Available also in CL53.

See also: oCheckBox:Checked, oCheckBox:Select()

oCheckBox:CapCol ─> nCol ACCESS

oCheckBox:CapCol := nCol ASSIGN

oCheckBox:CapCol([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the screen column where the check box's

caption is displayed. The input and output value is either in coordinates or in

pixels, depending on the current SET PIXEL setting. The default setting is

oCheckBox:Col + 4 columns at instantiation time.

<lPixel> is optional value indicating if the passed and returned value is in coordinates

or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are in

coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Access/assign is Available also in CL53.

See also: oCheckBox:CapRow, oCheckBox:Caption

oCheckBox:CapRow ─> nRow ACCESS

oCheckBox:CapRow := nRow ASSIGN

oCheckBox:CapRow ([nRow], [lPixel]) ─> nRow

<nRow> is a numeric value that indicates the screen row where the check box's

caption is displayed. The input and output value is either in coordinates or in

pixels, depending on the current SET PIXEL setting. The default setting is taken

from oCheckBox:Row at instantiation time.

OBJ 48

<lPixel> is optional value indicating if the passed and returned value is in coordinates

or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are in

coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Access/assign is Available also in CL53.

See also: oCheckBox:CapCol, oCheckBox:Caption

oCheckBox:Caption ─> cText ACCESS

oCheckBox:Caption := cText ASSIGN

<cText> is a string that describes the check box caption. If not redefined by :CapCol

and/or :CapRow, the text is displayed at the :Row and :Col + 4 position set at

instantiation time. You may specify an accelerator key: the character

immediately following an ampersand (&) is treated as accelerator key. This

accelerator key provides a quick and convenient mechanism for the user, to

move input focus to specific check box. The user performs the selection by

pressing the Alt key in combination with an accelerator key. The case of an

accelerator key is ignored.

Compatibility: Available also in CL53 and VO.

See also: CheckBox:CapCol, oCheckBox:Caption

oCheckBox:Cargo ─> exp ACCESS

oCheckBox:Cargo := exp ASSIGN

<exp> is a value of any type. The CheckBox:Cargo slot holds any user- definable

data which can be retrieved later. This property is not used by the CheckBox

object itself.

Compatibility: Available also in CL53.

oCheckBox:Checked ─> lChecked ACCESS

oCheckBox:Checked := lChecked ASSIGN

<lChecked> is a logical value that indicates whether the check box is checked or

unchecked. A value of true (.T.) indicates that it is checked and a value of false

(.F.) indicates that it is not checked. Equivalent to oCheckBox:Buffer instance.

In 3-state modus, a NIL value indicates the third UNDETERMINED state. The

assign also changes CheckBox:Value and CheckBox:TextValue. Also, if the

CheckBox:Value is changed, CheckBox:ValueChanged is set to TRUE.

Compatibility: Available also in VO.

See also: CheckBox:Buffer, CheckBox:Select(), CheckBox:Value

 OBJ 49

oCheckBox:ClassName() ─> cText

For compatibility to Clipper's getsys.prg only. Returns fix "CHECKBOX" regardless

the subclass. In FlagShip, you may also use IsObjClass() which provides you with

more detailed information.

Compatibility: Available but undocumented in CL53

See also: IsObjClass() and IsObjProperty() functions

oCheckBox:Col ─> nCol ACCESS

oCheckBox:Col := nCol ASSIGN

oCheckBox:Col([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the screen column where the check box is

displayed. With Access/assign, the value is either in coordinates or pixels

according to the current SET PIXEL status.

<lPixel> is optional value indicating if the passed and returned value is in coordinates

or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are in

coordinates, otherwise the current SET PIXEL status is used.

With terminal i/o, the <nCol> value specifies the column where the first character of

oCheckBox:Stype (or :ColdBox, :HotBox) is displayed, i.e. where the left square

bracket [X] of the check box representation display. The whole check box occupies 3

columns.

With GUI i/o, the check box is displayed as a widget (control) and <nCol> is the

leftmost widget coordinate. To ensure the same look and feel to an application

running in textual mode, and to display the widget at approx. the same screen

position, the given <nCol> coordinate is automatically adapted by adding a pixel

value taken from the global array element _aGlobSetting[GSET_G_N_CHBOX_COL]

and [GSET_G_N_CHBOX_WIDTH] (see source in initio.prg) which may be positive or

negative and are modifiable by the application.

Compatibility: Access/assign is Available also in CL53.

See also: CheckBox:Row, CheckBox{} instantiation

oCheckBox:ColdBox ─> cBox ACCESS

oCheckBox:ColdBox := cBox ASSIGN

<cBox> is an optional string that specifies the characters to use when drawing a box

around the check box when it does not have input focus. Its default value is a

single line box, or the value specified in the global array _aGlobSetting

[GSET_T_C_COLDBOX] respectively. Predefined <cBox> constants are in the

box.fh file:

OBJ 50

Constant Description

B_SINGLE Single line box

B_DOUBLE Double line box

B_SINGLE_DOUBLE Single line top/bottom, double line sides

B_DOUBLE_SINGLE Double line top/bottom, single line sides

B_PLAIN Use ASCII chars only

The ColdBox apply only if you assign null-string "" to oCheckBox:Style which is

preferred otherwise.

Compatibility: Available also in FS5 only. This property is considered in terminal mode

only and ignored otherwise.

See also: CheckBox:HotBox, CheckBox:SetFocus(), CheckBox:Style

oCheckBox:ColorSpec ─> cAttrib ACCESS

oCheckBox:ColorSpec := cAttrib ASSIGN

<cAttrib> is a character string specifying the color attributes that are used by the

display() and show() method. The string must contain four color specifiers.

Position Applies To Default value used from

in <cAttrib> current SET COLOR

1 Check box without input focus Unselected

2 Check box with input focus Enhanced

3 The check box's caption Standard

4 The check box caption's accelerator key Background

Compatibility: Available also in CL53, This property is considered in terminal mode

only and ignored otherwise.

See also: CheckBox:HasFocus, SET COLOR, SET()

oCheckBox:Destroy() ─> NIL

Destroys the CheckBox object and restores the previous screen content. This method

can be used when a CheckBox object is no longer needed. oCheckBox:Destroy() de-

instantiates the CheckBox object and allows you to close and free any resources that

were opened or created by the object, without waiting for the garbage collector. This

method calls internally oCheckBox:Axit() which is the equivalence for :Destroy()

Compatibility: Available also in VO

See also: CheckBox{} instantiation

 OBJ 51

oCheckBox:Display() ─> self

Show the check box, it frame/box and caption on the screen. The check box widget

(control) remains invisible until you invoke oCheckBox: Display() or

oCheckBox:Show(). This allows the program to set up the widget (control) correctly

(with the correct size, position, and any other parameters), while avoiding the "visual

noise" of changing controls. oCheckBox:Display() uses the values of the following

instance variables to correctly show the list in its current context, in addition to

providing maximum flexibility in the manner a check box appears on the screen:

Buffer, Caption, CapCol, CapRow, Col, ColdBox or HotBox, ColorSpec, HasFocus,

Row, and Style.

Compatibility: Available also in CL53

See also: CheckBox:Show()

oCheckBox:Fblock ─> bBlock ACCESS

oCheckBox:Fblock := bBlock ASSIGN

<bBlock> is a code block or NIL. The code block callback, when present, is evaluated

each time the CheckBox object receives or loses input focus. The code block

receives two arguments: the object self and the current :HasFocus status, which

indicates whether the check box is receiving (.T.) or losing (.F.) input focus. In

GUI, the object receives focus every time the user clicks (or activates) the check

box widget and looses focus when other widget is selected.

Compatibility: Available also in CL53, but Clipper does not pass any arguments to

the code block, and hence cannot use generalized but object specific code blocks

which needs to check the current oCheckBox:HasFocus status by itself.

See also: CheckBox:HasFocus, CheckBox:SetFocus(), CheckBox:KillFocus(),

CheckBox:Sblock

oCheckBox:Handler ─> bHandler ACCESS

oCheckBox:Handler := bHandler ASSIGN

<bHandler> is a code block or NIL. The code block, when present, is invoked from

the oCheckBox:Show() method and replaces the default check box handler

Available also in the <FlagShip_dir>/system/checkboxhand.prg source file. The

code block receives one argument, the object self.

Compatibility: Available also in FS5 only.

See also: CheckBox:Show()

OBJ 52

oCheckBox:HandlerSelect ─> lOn ACCESS

oCheckBox:HandlerSelect := lOn ASSIGN

<lOn> is a logical value signaling that the checkbox switches the state either in the

handler by :Select() if .T. or automatically if .F. (default). Apply for GUI mode

only.

oCheckBox:HasFocus ─> lFocus ACCESS

<lFocus> is a logical value indicating whether the object has input focus (TRUE) or

not. In GUI, the object receives focus every time the user clicks (or activates) the

widget and looses the focus when other widget is selected.

Compatibility: Available also in CL53

See also: CheckBox:KillFocus, CheckBox:SetFocus(), CheckBox:Fblock

oCheckBox:Height ─> nRow ACCESS

oCheckBox:Height := nRow ASSIGN

oCheckBox:Height ([nRow], [lPixel]) ─> nRow

<nCol> is a numeric value that indicates the height of the check box. With access

and assign, the value is either in coordinates or pixels according to the current

SET PIXEL status.

<lPixel> is optional value indicating if the passed and returned value is in coordinates

or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are in

coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Available also in FS5, apply for GUI mode only

oCheckBox:HitTest(nMouseRow, nMouseCol, [lPixel]) ─> nStatus

Determines if the mouse cursor is within the region of the screen that the check box

occupies.

<nRow> Numeric value representing the current or tested screen row position of the

mouse cursor.

<nCol> Numeric value representing the current or tested screen column position of

the mouse cursor.

<lPixel> If specified TRUE, the mouse coordinates are assumed in pixel. If FALSE,

the mouse parameters are assumed in current row/col coordinates. If this

parameter is not specified (i.e. NIL), the kind of passed mouse coordinates is

determined from the current SET PIXEL setting.

<nStatus> Returned numeric value indicating the relationship of the mouse cursor

with the check box. The constants are specified in button.fh header file.

 OBJ 53

Value Constant Description

>= 0 n/a The mouse is not located in the box region

-1025 HTCAPTION The mouse cursor is on the box's caption

-2049 HTCLIENT The mouse cursor is on the check box

Compatibility: Available also in CL53

See also: Mrow(), Mcol()

oCheckBox:HotBox ─> cBox ACCESS

oCheckBox:HotBox := cBox ASSIGN

<cBox> is an optional string that specifies the characters to use when drawing a box

around the check box when it has input focus. Its default value is a single line

box, or the value specified in the global array _aGlobSetting

[GSET_T_C_HOTBOX] respectively. Predefined <cBox> constants are in the

box.fh file:

Constant Description

B_SINGLE Single line box

B_DOUBLE Double line box

B_SINGLE_DOUBLE Single line top/bottom, double line sides

B_DOUBLE_SINGLE Double line top/bottom, single line sides

B_PLAIN Use ASCII chars only

The HotBox apply only if you assign null-string "" to oCheckBox:Style which is

preferred otherwise.

Compatibility: Available also in FS5 only. This property is considered in terminal mode

only and ignored otherwise.

See also: CheckBox:ColdBox, CheckBox:HasFocus, CheckBox:SetFocus(),

CheckBox:Style, @..BOX

oCheckBox:Init([par1]...[par5) ─> self

This is an internal method invoked automatically at instantiation of the CheckBox

object. It is not intended to be called by the application.

Compatibility: Available also in VO

See also: CheckBox{} instantiation

oCheckBox:KillFocus() ─> self

Take input focus away from a CheckBox object. Upon receiving this message, the

CheckBox object redisplays itself with the :ColdBox frame and, if present, evaluates

OBJ 54

the code block specified by :Fblock. This message is meaningful only when the

CheckBox object has input focus.

Compatibility: Available also in CL53. In Clipper, the box is not drawn automatically.

See also: CheckBox:HasFocus, CheckBox:SetFocus(), CheckBox:Fblock

oCheckBox:Message ─> cText ACCESS

oCheckBox:Message := cText ASSIGN

<cText> is a character string displayed in the windows status bar (GUI), or in the

screen line specified by SET MESSAGE (in terminal mode).

Compatibility: Available also in CL53.

See also: CheckBox:Tooltip(), SET MESSAGE, oApplic:StatusMessage()

oCheckBox:Modified ─> lOk ACCESS

oCheckBox:Modified := lOk ASSIGN

<lOk> is a logical value that is set to TRUE when the user clicks on a button, and

reset to FALSE when the mouse button is released.

Compatibility: Available also in VO. Apply in GUI mode only.

oCheckBox:Row ─> nRow ACCESS

oCheckBox:Row := nRow ASSIGN

oCheckBox:Row([nRow], [lPixel]) ─> nRow

<nRow> is a numeric value that indicates the screen row where the check box is

displayed. With Access/assign, the value is either in coordinates or pixels

according to the current SET PIXEL status.

<lPixel> is optional value indicating if the set/get value is in coordinates or pixels. If

true(.T.), the row data are in pixel; if false (.F.), data are in coordinates, otherwise

the current SET PIXEL status is used.

With terminal i/o, the <nRow> value specifies the column where the three characters

of check box [X] display, see also :Style for details.

In GUI i/o mode, the check box is displayed as a widget (control) and <nRow> is the

topmost widget coordinate when the row is specified in pixel. If the <nRow > is given

in coordinates, the widget position is automatically adapted, to ensure the same look

and feel to an application running in textual mode, and to display the widget at approx.

the same screen position. The topmost widget position is then calculated from the

given <nRow> coordinate minus the current line height plus a value taken from the

global array element _aGlobSetting [GSET_G_N_CHBOX_ROW] and _aGlobSetting

[GSET_G_N_CHBOX_HEIGHT] which is either positive or negative number of pixels.

Compatibility: Access/assign is Available also in CL53.

See also: CheckBox:Col, CheckBox{} instantiation

 OBJ 55

oCheckBox:Sblock ─> bBlock ACCESS

oCheckBox:Sblock := bBlock ASSIGN

<bBlock> is an optional code block or NIL. The code block callback, when present,

is evaluated each time the CheckBox object's state changes. The name "Sblock"

refers to state block. The code block receives two arguments: 1) the object self,

and 2) the check status, i.e. the content of oCheckBox:Buffer.

Compatibility: Available also in CL53, but Clipper does not pass any arguments to

the code block; it hence cannot use generalized but object specific code blocks which

must extract the required values from the known object by itself.

See also: CheckBox:Buffer, CheckBox:Fblock

oCheckBox:Select([lOnOff]) ─> lOnOff

<lOnOff> is a logical value that indicates whether the check box should be checked

or not. Set to true (.T.) to check the box or false to uncheck the box. If omitted,

the check box state will toggle to its opposing state. Considered only if the box

has input focus.

The check box state is typically changed when the space bar is pressed or the

mouse's left button is pressed when its cursor is within the check box's region of the

screen. FlagShip's default handler used in oCheckBox:Show() also accepts +,T,t,Y,y

keys to set the status ON, and -,F,f,N,n keys to set the check box status OFF, and

space or "x" key to toggle the status.

Compatibility: Available also in CL53

See also: CheckBox:Buffer

oCheckBox:SetFocus() ─> self

Set input focus to a CheckBox object. Upon receiving this message, the CheckBox

object redisplays itself with the :HotBox frame and, if present, evaluates the code

block specified by :Fblock. This message is meaningful only when the CheckBox

object does not have input focus. In GUI, the object receives focus also every time

the user clicks (or activates) the widget.

Compatibility: Available also in CL53. In Clipper, the box is not drawn automatically.

See also: CheckBox:HasFocus, CheckBox:KillFocus(), CheckBox:Fblock,

CheckBox:HotBox

OBJ 56

oCheckBox:Show() ─> self

This method activates either the default or user specific input handler. Is show the

check box and its caption on the screen, activate focus, wait for user input and set

the check box status in :Buffer accordingly, then kill the focus. The default handler is

available also in the <FlagShip_dir>/system/checkboxhand.prg source file and is

equivalent to a manual code sequence

 oCheckBox:Display()
 oCheckBox:SetFocus()
 key := InkeyTrap(0) // considers SET KEY
 do case
 case chr(key) $ " xX"
 oCheckBox:Select(!oCheckBox:Buffer) // toggle on/off
 case chr(key) $ "+yYtT"
 oCheckBox:Select(.T.)
 case chr(key) $ "-nNfF"
 oCheckBox:Select(.F.)
 endcase
 oCheckBox:KillFocus()

You may assign your own handler by the oCheckBox:Handler property.

Compatibility: Same named method is available also in VO which returns NIL

See also: CheckBox:Display(), CheckBox:Handler

oCheckBox:Style ─> cStyle ACCESS

oCheckBox:Style := cStyle ASSIGN

<cStyle> is a character string that indicates the delimiter characters that are used by

the check box's Display() method. The string must contain five characters. The

first is the left delimiter, the 2nd is the checked indicator, the 3rd is the unchecked

indicator, the 4th character is the right delimiter and the 5th character for the

undetermined check box state. The default style is pre-defined in the global array

element _aGlobSetting[GSET_T_C_CHBOX_STYLE] containing "[X]?" at start-

up; it may be re-defined by a simple assignment later.

When you assign null-string "" to oCheckBox:Style, the oCheckBox:ColdBox

and :HotBox is used as a frame around the check box region, and the 2nd, 3rd and

5th character in the global setting apply for the checked, unchecked, and

undetermined indicator.

Compatibility: Considered in terminal mode only, ignored in GUI. Available also in

CL53 whose default is a string of four characters containing "[" + chr(251) + "]".

Neither the redefinition of defaults, nor the ColdBox and HotBox instances are

available in Clipper.

See also: CheckBox:ColdBox, CheckBox:HotBox, CheckBox:Display(),

CheckBox:Show()

 OBJ 57

oCheckBox:ToolTip ─> cText ACCESS

oCheckBox:ToolTip := cText ASSIGN

<cText> is a string representing the displayed tool tip, i.e. a short info message which

pop up's when the mouse is over the check box.

Compatibility: Available in FS5 only, apply for GUI, ignored otherwise

See also: CheckBox:Message

oCheckBox:TypeOut ─> lVal ACCESS

<lVal> is a value always containing false (.F.). It is not used by the CheckBox object

and is only provided for compatibility with the other GUI control classes.

Compatibility: Available also in CL53

oCheckBox:Value ─> exp ACCESS

oCheckBox:Value := exp ASSIGN

<exp> contains TRUE (.T.) if the check box is in the checked (ON) state, FALSE (.F)

if it is in the unchecked state (OFF) and NIL in the third UNDETERMINED state.

Compatibility: Available also in VO

oCheckBox:ValueChanged ─> lStat ACCESS

oCheckBox:ValueChanged := lStat ASSIGN

<lStat> contains TRUE or FALSE, depending on the state of the check box. For 2-

state check boxes, it is always TRUE. If a 3-state check box is in the third

UNDETERMINED state, <lStat> is FALSE.

Compatibility: Available also in VO

See also: CheckBox:Value

oCheckBox:Width ─> nCol ACCESS

oCheckBox:Width := nCol ASSIGN

oCheckBox:Width ([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the width of the check box. With Access and

assign, the value is either in coordinates or pixels according to the current SET

PIXEL status.

<lPixel> is optional value indicating if the passed and returned value is in coordinates

or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are in

coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Available in FS5 only, apply for GUI, ignored otherwise

OBJ 58

ComboBox Class

The ComboBox Class is a special case of the ListBox class. It creates and manages combo

boxes.

Combo boxes display a list of items or choices to the user. The difference to the list box is,

that only one list item is displayed at a time while the whole list is poped-up upon request.

As with other GUI classes in FlagShip, the general ComboBox class is internally inherited by

three different sub-classes: _gComboBox for GUI based application, _tComboBox for

terminal/text based mode, and _bComboBox for basic i/o mode, all defined in the boxclass.fh

header file. The proper class, corresponding to the used i/o mode, is set either at compile time

with the compiler switch "-io=g|t|b", or latest at run-time depending on the currently used

environment.

Note: in the basic i/o mode, only a rough combo box functionality is simulated by the sequential

in/output.

ComboBox Class Index

Class ComboBox

Inherits from: ListBox

Inherited by: - (none)

Class prototype: boxclass.fh

Defines: box.fh

AddItem() METHOD Add (append) a new item to a combo box

Bitmap ACC/ASS Display bitmap as combo box item

Bottom ACC/ASS Bottommost screen row of the box

Buffer ACC Position in the list of the selected item

CapCol ACC/ASS Screen column of the combo box's caption

CapRow ACC/ASS Screen row of the combo box's caption

Caption ACC/ASS String that describes the combo box caption

Cargo ACC/ASS A user value of any type

ChangeSelected() METHOD Change a range of items in a multiple selection

ClassName METHOD For compatibility to Clipper's getsys.prg only

Clear() METHOD Clear (delete) all items in a combo box

ClearSelection() METHOD Clear a multiple selection combo box

Close() METHOD Closes the combo box

ColdBox ACC/ASS Frame of combo box without focus

ColorSpec ACC/ASS Color attributes

CurrentItem ACC/ASS String representing the displayed ComboBox item

CurrItemNo ACC/ASS Numeric value indicating the selected item

CurrentText ACC/ASS Fix ""

 OBJ 59

DeleteItem() METHOD Remove an item from a combo box

DelItem(p1) METHOD Remove an item from a combo box

DeselectItem() METHOD Turn off the selection of a specified item

Destroy() METHOD Destroys the ComboBox object

Display() METHOD Show the combo box and its caption on the screen

DropDown ACC Always .T.

Exec() METHOD Process user input, same as :Show()

Fblock ACC/ASS Code block evaluated at receiving/loosing focus

FillUsing() METHOD Data server/dictionary driver

FindItem() METHOD Search a combo box for a specified item

FindText() METHOD Search a combo box for a specified string

FirstSelected() METHOD Position of the 1st item in a multiple selection

Font ACC/ASS Font object used to display the combo box items

GetData() METHOD Get the data portion of a combo box item

GetItem() METHOD Get the item property

GetItemValue() METHOD Same as GetData()

GetText(p1) METHOD Get the item text

HasFocus ACC Indicates whether the object has input focus

HitTest() METHOD Determines if the mouse cursor is within the box

HotBox ACC/ASS Frame of combo box with focus

InputBlock ACC/ASS CodeBlock for default/user keyboard handler

InsItem() METHOD Insert a new item to a combo box

IsOpen ACC Indicator whether the combo box widget is visible

ItemCount ACC Number of items in the list

KillFocus() METHOD Take input focus away from a ComboBox object

Left ACC/ASS Leftmost screen column of the box

ListFiles() METHOD Fill a combo box with the names of matching files

Message ACC/ASS String displayed in the windows status bar

Modified ACC/ASS Ignored.

NextItem() METHOD Skip to the next available item

NextSelected() METHOD Skip to the next selected item

Open() METHOD Opens the combo box (drop-down box)

PrevItem() METHOD Skip to the previous available item

Right ACC/ASS Rightmost screen column of the box

Sblock ACC/ASS Code block evaluated at user selection

Scroll() METHOD Scrolls the contents of a combo box up or down

Select() METHOD Change the selected item in a list

SelectedCount ACC Number of items selected in a multiple selection

SelectedFile ACC Selected file filled by :ListFiles()

SelectItem() METHOD Change the selected item in a list

SetData() METHOD Change the property of an available item

SetFocus() METHOD Set input focus to a ComboBox object

SetItem() METHOD Replaces the item property

SetText() METHOD Change/replace the displayed text of item

SetTop() METHOD Move a specified item to the top of the combo box

Show() METHOD Show the combo box and its caption on the screen

TextValue ACC/ASS String representing the displayed ComboBox item

OBJ 60

ToolTip ACC/ASS Short pop-up info message

Top ACC/ASS Topmost screen row of the box

TopItem ACC/ASS Position of the first visible item

TypeOut ACC/ASS Indicator whether the list contains any items

Value ACC/ASS Any value associated with the specified item

ValueChanged ACC/ASS Indicator representing the status of :Value

Vscroll ACC/ASS Ignored in FlagShip

 OBJ 61

ComboBox Class Instantiation

oCmbBox := [_g|_t|_b]ComboBox { [nR1],[nC1], [nR2],[nC2], [lPixel] } [1]

oCmbBox := [_g|_t|_b]ComboBoxNew ([nR1],[nC1], [nR2],[nC2], [lPixel]) [2]

oCmbBox := ListBox ([nR1], [nC1], [nR2], [nC2], .T., [lPixel]) [3]

oCmbBox := ComboBox { [oOwn], [nResrc] } [4]

oCmbBox := ComboBox { [oOwn], [nId], [oPoint], [oDim], [nStyle] } [5]

Any of the above syntax instantiate new combo box object. Syntax [1] and [2] are

standard FlagShip and should be preferred. Syntax [3] is supported for compatibility

to Clipper 5.3, [4] and [5] is supported for compatibility to VO.

The combo box widget (control) remains invisible until you invoke oCmdBox:Show()

or oCmdBox:Display(). This allows the program to set up the control correctly (with

the correct size, position, and any other parameters), while avoiding the "visual noise"

of changing controls. Arguments:

<nR1> topmost row in coordinates or pixel, optional. If not specified, 0 is the default

<nC1> leftmost column in coordinates or pixel, optional. If not specified, 0 is the

default

<nR2> bottom row in coordinates or pixel, optional. If not specified, MaxRow() is

default

<nC2> rightmost column in coordinates or pixel, optional. If not specified, MaxCol()

is the default

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in

row/col coordinates, otherwise the current SET PIXEL is used.

<oOwn> owner object of the combo box, optional. Default is the oApplic object.

<nResrc> resource ID of the combo box

<nStyle> style constant of the combo box according to box.fh, optional. If not given,

LBS_STANDARD is the default.

Compatibility: Available also in CL53 (syntax 3) and VO (syntax 4 and 5).

See also: oListBox:Destroy()

ComboBox Class Properties

All properties of the ListBox class are available also for the ComboBox class. Refer to

description of ListBox class for details.

OBJ 62

Error Class

Generally ERROR objects contain information for the error handler routine. It can be compared

to an array, however one with fixed elements. The ERROR object can also serve as an

information carrier for the RECOVER part of a program interrupt structure. See BEGIN

SEQUENCE.

The ERROR object contains only information (instances), no executable methods are

available.

1. Error handling strategy

FlagShip offers different types of handling errors and exceptions:

• Program enquiry and correction of easily recoverable errors (e.g. through prior allocation

with a default value) in an IF.. ..ELSE...ENDIF structure,

• Program generation and treatment of exceptional statuses and interrupts with the BEGIN

SEQUENCE .. BREAK ... RECOVER ... END structure (see section CMD).

• Error handling at lower system level with ERROR blocks. These are generally used to

handle errors in the FlagShip library, e.g. on wrong parameters, incorrect data types,

input/output errors etc. The programmer can extend, modify, or even replace the default

handling by using additional user-defined functions.

In the following chapter low-level error treatment is described. For a technical treatment of

exception statuses, see sections LNG and CMD.

 OBJ 63

2. Error Blocks and Functions

When FlagShip asserts an error, it displays it on the screen, and a user action (Continue, Abort

etc.) is prompted. See section FSC.4. The programmer can supervise the entire error action

as all the relevant files are supplied in the source code.

1. If the library module determines an error, it generates the relevant error number

(according to FSerrors.h) and a text error description.

2. This information is passed on to a low-level error function using parameters (contained in

the file FSerror.prg).

3. The xxx_error function generates and occupies an ERROR object with information. Then

either the standard or the user-defined high-level error handling routine is activated by the

last generated error code block.

4. The error treatment routine evaluates the information from the ERROR object which has

been passed on, and then performs the relevant treatment. Generally the error is first

displayed on the screen, which enables the user to react appropriately (Cancel, Ignore,

Callstack, Debugger). With more simple errors the program execution can be continued

at the next source code instruction.

In order to be able to stagger the error handling routines as required, they are called via a

special code block, not directly. With the function ERRORBLOCK() this code block is passed

to the error system.

Before starting the program execution, FlagShip pre-generates a code block by calling the

function _DEFERROR() with ERRORBLOCK(). This function executes the default error

handling. If an additional or deviating error handling is to be implemented at any position in

the application, the programmer can:

a. save the current error code block in a variable by calling the function ERRORBLOCK(),

b. pass a new code block as parameter to the function ERRORBLOCK(),

c. then restore the original error handling block.

If an error occurs in the sequence b...c, the user-specific function (more precisely: the contents

of the code block) is executed, not the default handling. If the error is not the error, which

requires specific handling, the UDF can have further treatment executed by the predefined

error function.

OBJ 64

The whole error handling can be represented as follows:

 ╔═════ start-up module ════════════════════════
 ║ ERRORBLOCK ({|errObj| _DEFERROR (errObj) })
 ╚══

 ╔═════ FlagShip library ════════
1: default error handler is active: ║
 ║ FUNCTION anyStdFn()
 anyStdFn() <---------------------> ║ IF something is wrong
 ║ CALL FSerror.c (code, desc)
2: supply user handler, which may ║ RETURN
 invoke the default _DEFERROR(): ║ ELSE
 ║ RETURN value
 def := ERRORBLOCK ({|x| ; ║ ENDIF
 myerr(x, def) }) ║
 anyStdFn() <-----> ║ ╔══ FSerror.prg ═════════════
 ╚══║ xxx_error() Entry
 ┌-------------------------------- ║ err = ERRORNEW()
 │FUNCTION myerr (errObj, defErr) ║ fill err with passed data
 │IF errObj:GENCODE == myCode ║ EVAL (ERRORBLOCK(), err)
 │ handle specif.error... ╠════════════════════════════
 │ELSE ║ FUNCTION _DEFERROR (err)
 │ EVAL (defErr, errObj) ║ handle the error...
 │ENDIF ║ RETURN or QUIT
 │RETURN NIL ╚════════════════════════════
 └--------------------------------

3: reset the default handler:
 ERRORBLOCK (def)

Technically a simple error handling for opening a database can look as follows:

 STATIC defaulterr

 USE nonexistent // i/o error generated by default handler
 defaulterr := ERRORBLOCK() // retrieve the default handler
 ERRORBLOCK({|err| MyHandler (err, defaulterr) }) // set new one

 USE nonexistent // now, MyHandler() is called
 ERRORBLOCK (defaulterr) // re-activate the default handler

 #include "error.fh"

 FUNCTION MyHandler (errObj, oldHandler)

 LOCAL getlist {}, file, dir, ii
 IF errObj:GENCODE == EG_OPEN .and.; // see error.fh
 errObj:OSCODE == 101 .and.; // see FSerrors.h
 errObj:CANRETRY .and.; // is RETRY possible ?
 errObj:OPERATION == "MYUSE" .and.; // see ERRORNEW() exampl
 LEN(errObj:FILENAME) > 0 // is file name supported?
 file := errObj:FILENAME // full file name
 IF ALERT ("File " + file + " not found", ;
 "Abort", "Specify directory") != 2
 QUIT
 ENDIF

 OBJ 65

 ii = RAT ("/", file)
 dir = IF (ii > 0, SUBSTR (file, 1, ii), "")
 file = IF (ii > 0, SUBSTR (file, ii+1), file)
 dir = PADR (dir, 250)
 @ 0,0 SAY "New directory:" GET dir PICTURE "@S50"
 READ
 IF LASTKEY() != 27
 dir := ALLTRIM (dir)
 IF (RIGHT (dir, 1) != "/"
 dir += "/"
 ENDIF
 errObj:FILENAME := dir + file // new file specification
 RETURN .T. // RETRY
 ENDIF
 ENDIF
 RETURN EVAL (oldHandler, errObj) // invoke default handler

Note: If you use the alternative, smaller error handler FSerror.c (i.e. link it), no error objects

are generated by default. The error messages are displayed in a window that can be

repositioned as required. Due to identity of names, the FSerror.prg should never be compiled

in the directory <FlagShip_dir>/system. If you do this, the alternative C driver FSerror.c is

overwritten.

When program writing, it is absolutely crucial to ensure that the error handling routine does

not result in an endless loop by triggering the same error.

In the program <FlagShip_dir>/system/FSerror.prg a similar error object is generated on

input/output error:

 err:CARGO := NIL
 err:ARGS := ""
 err:CANDEFAULT := .F.
 err:CANRETRY := .F.
 err:CANSUBSTITUTE := .F.
 err:DESCRIPTION := "file write error;Write error;"
 err:FILENAME := ""
 err:GENCODE := 104
 err:OPERATION := ""
 err:OSCODE := 0
 err:SEVERITY := ES_IOERR
 err:SUBCODE := 0
 err:SUBSYSTEM := "BASE"
 err:TRIES := 0

Note: for even more comfortable programming, the instance variables will be even more

precisely defined in the library of the next FlagShip version and many functions will support

the full and half-automatic RETRY.

OBJ 66

ErrorNew ()

Syntax 1:

obj = ERRORNEW ()

Syntax 2:

obj = ERROR { }

Purpose:

Creates a new, empty ERROR object.

Arguments:

none.

Returns:

<obj> is the new allocated ERROR object, usually assigned to a regular FlagShip

variable.

Description:

ERRORNEW() creates a new object, which is used to carry information during

program execution.

Example:

Checks if a file is available and traps to the error handler if not. The newly installed

error handler also remains active during execution of the USE command. Prior to

returning from the function, the previous error handler is restored.

 #include "error.fh"

 IF .not. myuse ("anydatabase")
 QUIT
 ENDIF

 FUNCTION myuse (file)

 STATIC oldhandle // save current handle
 LOCAL myerr := ERRORNEW() // create object
 LOCAL block := {|err| myhandler(err, oldhandle)}
 oldhandle := ERRORBLOCK(block) // install new handle

 myerr:ARGS := {file}
 myerr:CANDEFAULT := .F.
 myerr:CANRETRY := .T.
 myerr:CANSUBSTIT := .F.
 myerr:CARGO := NIL
 myerr:DESCRIPTION := "File not found"
 myerr:FILENAME := file
 myerr:GENCODE := EG_OPEN
 myerr:OPERATION := "MYUSE"
 myerr:OSCODE := 101
 myerr:SEVERITY := ES_ERROR
 myerr:SUBCODE := 0
 myerr:TRIES := 0

 OBJ 67

 IF ! FILE(file)
 DO WHILE .T.
 myerr:TRIES++
 IF EVAL (ERRORBLOCK(), myerr) // trap error handler
 file := myerr:FILENAME
 IF FILE(file)
 EXIT
 ENDIF
 ELSE
 ERRORBLOCK (oldhandle)
 RETURN .F.
 ENDIF
 ENDDO
 ENDIF

 USE (file) SHARED // other errors poss.
 ERRORBLOCK (oldhandle) // restore old handle
 RETURN .T.

Classification:

programming

Class:

ERROR class, prototyped in <FlagShip_dir>/include/errclass.fh

Compatibility:

Available in FS4, C5 and VO. The alternative syntax 2 and the possibility of inheriting

it into an own subclass is available in FlagShip only.

Related:

ERRORBLOCK()

OBJ 68

Error Class Properties

err:ARGS Access/Assign

Contains an array of the arguments supplied to an operator or function when an

argument error occurs. For other types of error, err:ARGS contains a NIL value.

err:CANDEFAULT Access/Assign

Contains a logical value. TRUE indicates that the subsystem (operation, function) can

perform default error recovery for the error condition. Availability of default handling

and the actual default recovery strategy depends on the subsystem and the error

condition. The minimum action in the error handle is simply to ignore the error

condition and return FALSE which sets the default recovery. If err:CANDEFAULT is

TRUE, err:CANSUBSTITUTE must be FALSE.

err:CANRETRY Access/Assign

Contains a logical value. TRUE indicates that the subsystem (operation, function) can

retry the execution itself. Availability of retry depends on the subsystem and the error

condition. To invoke the default retry, return TRUE from the error handler. If the

automatic retry is not available, you may post the originate statement in a program

loop, e.g. USE... while NETERR() USE... enddo while ! RLOCK() enddo If

err:CANRETRY is TRUE, err:CANSUBSTITUTE must be FALSE.

err:CANSUBSTITUTE Access/Assign

Contains a logical value. TRUE indicates that the subsystem (operation, function) can

substitute a new result when returning from the error handler. Argument errors and

certain other simple errors allow the error handler to substitute a new result value for

the failed operation. If err:CANSUBSTITUTE is TRUE, err:CANDEFAULT and

err:CANRETRY must be FALSE.

err:CARGO Access/Assign

Contains a value of any data type supplied by the user. Not used by the Error system

itself.

err:DESCRIPTION Access/Assign

Contains a character string that describes the error condition in textual form. A null-

string "" indicates that the subsystem does not provide a printable description for the

error.

 OBJ 69

err:FILENAME Access/Assign

Contains a character value representing the file name originally used to perform an

input/output request. A null-string "" indicates that the subsystem does not provide

information on the file name.

err:GENCODE Access/Assign

Contains a numeric value representing a generic error code according to the EG_xx

manifests in the <FlagShip_dir>/include/error.fh (and the FSerrors.h) files. Zero

indicates that the error condition is specific to the subsystem and does not correspond

to any of the generic error codes.

err:OPERATION Access/Assign

Contains a character string representing the current operation or function name which

caused the error. For undefined variables or functions, it contains the name of the

variable or function. A null- string "" indicates that the subsystem does not provide

information on the operation.

err:OSCODE Access/Assign

Contains a numeric value representing the operating system error code according to

DOSERROR() and the EX_xx manifests in the <FlagShip_dir>/ include/error.fh file.

Zero indicates that the error condition was not caused by system call.

err:SEVERITY Access/Assign

Contains a numeric value indicating the severity of the error condition. Following

manifests are defined in the <FlagShip_dir>/ include/error.fh file:

ES_FTLERR Fatal error, requires immediate termination of the application.

ES_IOERR Input/output error; continuation may be possible, but the operation

was not performed.

ES_RTERR Run-time error; continuation may be possible, but the operation was

not performed.

ES_INTERR Internal error, probably caused by the continuation of previous i/o or

run-time error.

err:SUBCODE Access/Assign

Contains a numeric value representing the subsystem-specific error code. May also

be used for other purposes, such as a line number or additional information. Zero

indicates that the subsystem does not provide the information.

OBJ 70

err:SUBSYSTEM Access/Assign

Contains a character string representing the name of the subsystem generating the

error. Errors indicated by FlagShip itself may set err:SUBSYSTEM to "BASE". For

errors caused by the replaceable database driver (RDD), the name of the driver is

set. May be used for other purposes, such as indicating an internal driver name. Null-

string "" indicates that the subsystem does not provide the information.

err:TRIES Access/Assign

Contains a numeric value representing the number of times the failed operation has

been attempted. When err:CANRETRY is TRUE, the value of err:TRIES can be used

to limit the number of retry attempts. Zero indicates that the subsystem does not track

the number of times the operation has been tried.

 OBJ 71

ErrorBox Class

FlagShip provides several GUI classes used for dialog communication. Apart from the general

ALERT() function, there is available special MessageBox class and its sub-classes named

TextBox, InfoBox, ErrorBox and WarningBox

ErrorBox Class Index

Class ErrorBox

Inherits from: MessageBox

Inherited by: - (none)

Class prototype: dialogclass.fh

Defines: dialog.fh, box.fh

Alternative: standard function ALERT() or

ERRBOX()

BoxText ASSIGN Sets or redefines the displayed text

BoxType ASSIGN Type of the message box, i.e. the used

icon

Buttons ACC/ASS Type and caption of the used push

buttons

Caption ASSIGN Caption (title) of the message box

ColorSpec ACC/ASS Color specification for terminal i/o

DefButton ASSIGN Assigns one button as default

Font ACC/ASS Sets or redefines the used font

GuiColor ACC/ASS Color specification for GUI

HotBox ACC/ASS Box frame for terminal i/o

Exec() METHOD Display the message box and wait for

user action

Show() METHOD Equivalent to oBox:Exec()

Handle() METHOD for compatibility purposes only

TimeOut ACC/ASS time-out in seconds

Type ACC/ASS for compatibility purposes only

The ErrorBox is an usual MessageBox class with pre-defined properties

 oBox:BoxType := MBOX_ERROR
 oBox:BoxText := if(empty(cText), "Error !", cText)
 oBox:Caption := "Error"

OBJ 72

ErrorBox Class Instantiation

Syntax 1:

oBox := ErrorBox {[oOwner], [cText]}
Syntax 2:

oBox := ErrorBoxNew ([oOwner], [cText])
Syntax 3:

oBox := MessageBox {[cText], MBOX_ERROR, [ncaButt],
[iDefBut], [cTitle], [nOwner],
[oFont], .T. }

Any of the above syntax instantiate new Error box object, optionally with the given

caption, text, push-button(s) and font. The default message box is modal. This

means, the application is suspende until the user acknowledges the message.

Arguments (all optional):

<oOwner> is supported for compatibility purposes to VO and is ignored.

<cText> the displayed text, i.e. the information to be printed in the message box. You

may spilt the text in several lines by using either ";" (semicolon) or LF=chr(10)

character(s). If you need to print semicolon, use "\;". To insert an empty line,

use "; ;" or ";;". If the argument is omitted, no text is displayed. Assignable

also by oBox:BoxText. See the oBox:BoxText property for details about

alignment and HTML text formatting.

The box:Caption is pre-set to "Error", but may be re-defined by assigning any other

text to :Caption.

Example:

 oBox := ErrorBox{NIL, "Database " + myFile + " not found"}
 oBox:Caption := "Failure"
 oBox:Exec()

ErrorBox Class Properties

All the class properties are equivalent to MessageBox class; please refer there for further

details.

 OBJ 73

InfoBox Class

FlagShip provides several GUI classes used for dialog communication. Apart from the general

ALERT() function, there is available special MessageBox class and its sub-classes named

TextBox, InfoBox, ErrorBox and WarningBox

As with other GUI classes in FlagShip, the general InfoBox class is internally inherited by three

different sub-classes: _gInfoBox for GUI based application, _tInfoBox for terminal/text based

mode, and _bInfoBox for basic i/o mode, all defined in the dialogclass.fh header file. The

proper class, corresponding to the used i/o mode, is set either at compile time with the compiler

switch "-io=g|t|b", or latest at run-time depending on the currently used environment.

InfoBox Class Index

Class InfoBox

Inherits from: MessageBox

Inherited by: - (none)

Class prototype: dialogclass.fh

Defines: dialog.fh, box.fh

Alternative: standard function ALERT() or

INFOBOX()

BoxText ASSIGN Sets or redefines the displayed text

BoxType ASSIGN Type of the message box, i.e. the used

icon

Buttons ACC/ASS Type and caption of the used push buttons

Caption ASSIGN Caption (title) of the message box

ColorSpec ACC/ASS Color specification for terminal i/o

DefButton ASSIGN Assigns one button as default

Font ACC/ASS Sets or redefines the used font

GuiColor ACC/ASS Color specification for GUI

HotBox ACC/ASS Box frame for terminal i/o

Exec() METHOD Display the message box and wait for user

action

Show() METHOD Equivalent to oBox:Exec()

Handle() METHOD for compatibility purposes only

TimeOut ACC/ASS time-out in seconds

Type ACC/ASS for compatibility purposes only

The InfoBox is an usual MessageBox class with pre-defined properties

 oBox:BoxType := MBOX_INFO
 oBox:Caption := if(empty(cTitle), "InfoBox", cTitle)

OBJ 74

InfoBox Class Instantiation

Syntax 1:

oBox := InfoBox {[oOwner], [cTitle], [cText]}
Syntax 2:

oBox := InfoBoxNew ([oOwner], [cTitle], [cText])
Syntax 3:

oBox := MessageBox {[cText], MBOX_INFO, [ncaButt],
[iDefBut], [cTitle], [nOwner],
[oFont], .T. }

Syntax 4:

InfoBox (ctext, [cTitle]) -> nSelConstant

Any of the above syntax instantiate new info box object, optionally with the given

caption, text, push-button(s) and font. The default message box is modal. This

means, the application is suspended until the user acknowledges the message. The

InfoBox() function is supported for Clipper compatibility - note the swapped

parameters. Arguments (all optional):

<oOwner> is supported for compatibility purposes to VO and is ignored.

<cText> the displayed text, i.e. the information to be printed in the message box. You

may split the text in several lines by using either ";" (semicolon) or LF=chr(10)

character(s). If you need to print semicolon, use "\;". To insert an empty line, use

"; ;" or ";;". If the argument is omitted, no text is displayed. Assignable also by

oBox:BoxText. See the oBox:BoxText property for details about alignment and

HTML text formatting.

<cTitle> is a caption of the message box, i.e. text displayed in the title bar of the box.

If omitted, the application name plus "Info/Warning/Error" text is used.

Assignable also by oBox:Caption

Example 1:

 oBox := InfoBox{NIL, "My Info","Anything of interest;for the user"}
 oBox:Exec()

Example 2:

 InfoBox("Anything of interest;for the user", "My Info")

 OBJ 75

InfoBox Class Properties

All the class properties are equivalent to MessageBox class, please refer there for further

details.

The instantiation and the class properties are equivalent to MessageBox class, please refer

there for further details.

OBJ 76

MessageBox Class

FlagShip provides several GUI classes used for dialog communication. Apart from the usual

@SAY..GET..READ, ACHOICE() etc., there is available special MessageBox class and its

sub-classes named TextBox, InfoBox, ErrorBox and WarningBox. They extend the general

ALERT() function for additional functionality.

MessageBox Class

A message box is a small window that displays a caption, a message, an icon (chosen from a

predefined set of icons), and up to three push buttons (selected from a variety of predefined

combinations). It provides an easy alternative to the dialog window when all you require from

the user is a simple response. Message boxes require no sizing, positioning, or event handling.

In addition, message boxes can be application modal (the process cannot continue until the

user has acknowledged the message box), or it can be modal in relation to its owner window

(process cannot continue in its own window until the user has acknowledged the message

box).

The standard function ALERT() uses the MessageBox class in GUI mode. For your

convenience, and for a backward VO compatibility, there are also sub-classes TextBox,

InfoBox, ErrorBox and WarningBox available.

As with other GUI classes in FlagShip, the general MessageBox class is internally inherited

by three different sub-classes: _gMessageBox for GUI based application, _tMessageBox for

terminal/text based mode, and _bMessageBox for basic i/o mode, all defined in the

dialogclass.fh header file. The proper class, corresponding to the used i/o mode, is set either

at compile time with the compiler switch "-io=g|t|b", or latest at run-time depending on the

currently used environment.

Note: in the basic i/o mode, only a rough MessageBox functionality is simulated by the

sequential in/output.

MessageBox Class Index

Class MessageBox

Inherits from: - (none)

Inherited by: InfoBox, ErrorBox, TextBox, WarningBox

Class prototype: dialogclass.fh

Defines: dialog.fh, box.fh

Alternative: standard function ALERT()

 OBJ 77

BoxText ASSIGN Sets or redefines the displayed text

BoxType ASSIGN Type of the message box, i.e. the used icon

Buttons ACC/ASS Type and caption of the used push buttons

Caption ASSIGN Caption (title) of the message box

ColorSpec ACC/ASS Color specification for terminal i/o

DefButton ASSIGN Assigns one button as default

Exec() METHOD Display the message box and wait for user action

Font ACC/ASS Sets or redefines the used font

GuiColor ACC/ASS Color specification for GUI

HotBox ACC/ASS Box frame for terminal i/o

Image ACC/ASS Set/get the file name of image pixmap

Show() METHOD Equivalent to oBox:Exec()

Handle() METHOD for compatibility purposes only

TimeOut ACC/ASS time-out in seconds

Type ACC/ASS for compatibility purposes only

OBJ 78

MessageBox Class Instantiation

Syntax 1:

oBox := MessageBox ([cText], [nType], [ncaButt],
[iDefBut], [cTitle], [nOwner], [oFont],
[lModal])

Syntax 2:

oBox := MessageBox {[cText], [nType], [ncaButt],
[iDefBut], [cTitle], [nOwner], [oFont],
[lModal] }

Any of the above syntax [1] and [2] instantiate new message box object, optionally

with the given caption, text, push-button(s) and font. The default message box is

modal. This means, the application is suspended until the user acknowledges the

message. Arguments (all optional):

<cText> the displayed text, i.e. the information to be printed in the message box. You

may split the text in several lines by using either ";" (semicolon) or "\n" or

LF=chr(10) character(s). If you need to print semicolon, use "\;". To insert an

empty line, use "; ;" or ";;". If the argument is omitted, no text is displayed. This

value is also assignable by oBox:BoxText. See the oBox:BoxText description for

details about alignment and HTML text formatting.

<nType> is a type of the message box. One of the constants MBOX_INFO,

MBOX_WARNING, MBOX_ERROR, MBOX_QUEST, MBOX_NONE or MBOX_USER

defined in dialog.fh, specifying the type of the box and the used icon. If omitted,

MBOX_INFO is the default. Assignable also by oBox:BoxType. When

MBOX_USER is specified, also oBox:Image assignment is required.

<ncaButt> is a type and caption of the used push buttons.

• Either a numeric constant MBOX_OK, MBOX_YES, MBOX_NO, MBOX_ABORT,

MBOX_CANCEL, MBOX_RETRY, MBOX_IGNORE defined in dialog.fh,

• or up to three of these numeric constants added to each other,

• or a user defined string displayed in the push button. Note: the accelerator key

character is escaped by an ampersand (&). If you need to display the ampersand

itself, specify two ampersands (&&) in the string.

• or an array of numeric and/or string elements specifying each of the push buttons.

Up to three buttons are considered, the rest (i.e. array element 4 and greater) is

ignored.

If omitted or of an invalid type or value, MBOX_OK is the default. Assignable also by

oBox:Buttons

<iDefBut> Default button (1 to 3) assigned to the RETURN key. If not specified or

out of range, no default button is set (the default) so the user needs to press TAB

 OBJ 79

or cursor key before confirming by RETURN. Of course, this has no effect on the

choice via mouse click. Assignable also by oBox:DefButton

<cTitle> is a caption of the message box, i.e. text displayed in the title bar of the box.

If omitted, the application name plus "Info/Warning/Error" text is used.

Assignable also by oBox:Caption

<nOwner> Owner of the message box. If omitted, 0 (zero) or when SDI mode is used,

the parent of the message box is the application window. In MDI mode, giving a

value grater one specifies the owning MDI window for which the message is

modal.

<oFont> specifies the used font, when it should be different from the default, which

is oApplic:FontWindow. See details in Font object. Assignable also by oBox:Font

<lModal> True (.T., the default) or when omitted declares the message box is modal.

This means, the application is suspended until the user acknowledges the

message. False (.F.) declares the message box non modal, which will not

suspend the application or the MDI window.

Example 1:

 MessageBox{"Hello"}:Show() // info box, OK button

Example 2: warning box with text and three buttons

 [OK] [Ignore] [Don't care]

 #include "dialog.fh"
 oBox := MessageBox{"This warning text;is displayed in" +;
 chr(10)+ "three lines", ;
 MBOX_WARNING, {MBOX_OK, MBOX_IGNORE, "Do&n't care"} }
 oBox:Font := FontNew("Times", 10) // redefine the used font
 nPressed := oBox:Exec() // display, wait for user action
 if nPressed == 0
 ? "Esc key pressed"
 elseif nPressed == 1
 ? "ok action..."
 elseif nPressed >= 2
 ? "will ignore..."
 endif

Example 3: see also FUN.Alert(), InfoBox(), TextBox()

OBJ 80

MessageBox Class Properties

oBox:BoxText := cText ASSIGN

Set or redefine the displayed text, i.e. the information to be printed in the message

box.

<cText> the displayed text, i.e. the information to be printed in the message box. You

may split the text in several lines by using either ";" (semicolon) or "\n" or

LF=chr(10) character(s). If you need to print semicolon, use "\;". To insert an

empty line, use "; ;" or ";;". To clear the previous value, assign NIL or null-string

"".

Alignment: the default alignment is left justified in GUI and centered in Terminal i/o

mode. You may override this defaults by assigning
 _aGlobSetting[GSET_G_N_ALERT_ALIGN] := numValue // default = 0

where <numValue> = 0: default alignment, 1: left justify, 2: center, 3: right justify.

Every single line can additionally be individually aligned by three special characters

at the line begin (i.e. after the ";" or "\n" line separator): "<<!" align left, ">>!"

align right, "><!" or "<>!" to center this line, e.g.
 oBox:cText := "><!centered;<<!left;>>!right;default"

Of course, these special markers are filtered out from the text.

If the line is too long, it is automatically wrapped. In GUI mode, you may specify the

maximal text width and height (in pixel) by assigning
 _aGlobSetting[GSET_G_N_ALERT_WIDTH] := nPix // default = 0
 _aGlobSetting[GSET_G_N_ALERT_HEIGHT] := nPix // default = 0

or <nPix> = 0: adjust/fit box to current window size, or <nPix> = -1: adjust/fit box to

desktop size. In GUI mode, the default font oApplic:FontWindow is used, except you

specify your own font object by assigning
 _aGlobSetting[GSET_G_O_ALERT_FONT] := oFont|NIL // def = NIL

In Terminal i/o mode, the displayed box and wrapping is adjusted automatically

according to MaxCol() and MaxRow().

HTML-Text: In GUI mode, you alternatively you may format the message text using

HTML like tags (the tag itself is not case sensitive):

text_part = print "text_part" in bold

<I>text_part</I> = print "text_part" in italic

<U>text_part</U> = print "text_part" underlined

<TT>text_part</TT> = print "text_part" in fixed font

<CENTER>text_part</CENTER> = print "text_part" centered

<PRE>...</PRE> = preserve whitespaces in the "..." text part

 OBJ 81

text_part = print "text_part" in color, where

rr=red, gg=green, bb=blue RGB fraction given in hexadecimal (00, 80, FF). Black

text is "#000000", white "#ffffff", grey "#808080", purple "#800080", red

"#FF0000", blue "#0000FF" and so on. You also may use HTML color names like

"yellow", "aqua" etc.

text_part = print "text_part" in another font size, nn is the

logical size (1 to 7) of the font. The value may either be absolute, for example

size=3, or relative like size=-2 or size=+1.

text_part = print "text_part" in another font family of the

font, for example face=times.

<HR> = draw horizontal line

 = new line

<P> or <P>...</P> = new paragraph = draw image file

Also simple <TABLE ...><TR><TD> colText </TD><TD> colText </TD></TR>...

</TABLE> are supported. You may use following <table> tags: bgcolor, width, border,

cellspacing, cellpadding. The <TR> tags are: bgcolor. The <TD> tags are: bgcolor,

width, colspan, rowspan, align.

Same as in HTML documents, you may combine the tags, e.g. <U> underlined

</U> red bold

The HTML text formatting is recognized automatically by scanning the text whether

there is something that looks like a tag before the first line break. To ensure HTML

formatting, set <HTML> at beginning of the text. In HTML formatted text, the line

breaks using ";" are not recognized, use
 or <P> tags instead. An example is

available in memoedithand.prg

oBox:BoxType := nType ASSIGN

Set or redefine the type of the message box, i.e. the used icon (none, info, warning,

error).

<nType> is the same as argument <nType> in the MessageBox{...} instantiation, see

description there. To clear the previous value, assign NIL or 0 (zero).

oBox:Buttons ─> ncaButt ACCESS

oBox:Buttons := ncaButt ASSIGN

Set or redefine the type and caption of the used push buttons.

<ncaButt> is the same as argument <ncaButt> in the MessageBox{...} instantiation,

see description there. To clear the previous value, assign NIL or 0 (zero).

OBJ 82

oBox:Caption := cTitle ASSIGN

Sets or redefine the caption of the message box, i.e. text displayed in the title bar of

the box.

<cTitle> is the same as argument <cTitle> in the MessageBox{...} instantiation, see

description there. To clear the previous value, assign NIL or null-string ""

oBox:ColorSpec ─> cColor ACCESS

oBox:ColorSpec := cColor ASSIGN

<cColor> is an optional color specification, considered in Terminal i/o mode. For GUI

mode, see oBox:GuiColor. The default is pre-defined in the global/public array

_aGlobSetting[GSET_T_C_MSGBOXCOLOR] and is "W+/B,B/W", see initio.prg

oBox:DefButton := iDefBut ASSIGN

Set one button as default, i.e. the by RETURN key simulated button.

<iDefBut> is the same as argument <iDefBut> in the MessageBox{...} instantiation.

Specify 0 to disable this feature. Value of 1 to 3 to sets the button number 1..3

as default. If the default button feature is disabled, you need to press TAB or

Cursor key to reach the required button via keyboard. The default key

assignment does not affect the choice via mouse click.

oBox:Exec([nTimeOut]) ─> nSelected

Display the message box, wait for user action and return a numeric value

representing the consecutive number of the pressed button, starting at 1 (one).

Pressing the ESC key returns 0 (zero). Note, the order of keys is guaranteed only

when using the array syntax in MessageBox{} instantiation or in the oBox:Buttons

assignment. For constants added to each other, preferably use oBox:Show() instead.

See example above. Arguments:

<nTimeOut> is a optional value specifying time-out in seconds. Zero = 0 which is the

default let's forever until an user action.

<nSelected> is the consecutive number of the pressed button. 0 is returned on ESC

or time out.

oBox:Font ─> oFont ACCESS

oBox:Font := oFont ASSIGN

Set or redefine the used font.

<oFont> is the same as argument <oFont> in the MessageBox{...} instantiation, see

description there. To clear the previous value, assign NIL which will then use the

default oApplic:FontWindow font, or a font assigned globally for all text boxes by

_aGlobSetting[GSET_G_O_ALERT_FONT] := oFont|NIL // def = NIL

 OBJ 83

oBox:GuiColor ─> cColor ACCESS

oBox:GuiColor := caoColor ASSIGN

<caoColor> is color specification, considered in GUI mode. For Terminal i/o mode,

see oBox:ColorSpec. <caoColor> corresponds to SET COLOR value and is

either

• string with foreground and background color, e.g. "N+/RG+"

• or string as RGB tripplet, e.g. "#808080/#F8F4E0" or "N+/#F8F4E0"

• or an array of RGB values for foreground and background (e.g. {{128,128,128},

{248,244,224}}

• or an color object

<cColor> is current foreground and background color returned as RGB string tripplet,

e.g. "#808080/#F8F4E0"

oBox:Handle() ─> num

Supported for backward compatibility to VO only. Returns 0 (zero).

oBox:HotBox ─> cBoxFrame ACCESS

oBox:HotBox := cBoxFrame ASSIGN

<cBoxFrame> is an optional string specified the frame displayed around the

message box in Terminal i/o mode. The default is pre-defined in the global/public

array _aGlobSetting[GSET_T_C_ALERTBOX] and is B_PLAIN or B_SINGLE when

using #include "fspreset.fh"

oBox:Image ─> cImageFile ACCESS

oBox:Image := cImageFile ASSIGN

<cImageFile> is a string specifying the name of user defined image used instead of

the MBOX_INFO, MBOX_WARNING, MBOX_ERROR or MBOX_QUEST default

images. If <cImageFile> is not empty(), MBOX_USER is assigned automatically

to oBox:BoxType. The <cImageFile> may contain either the file name only to

search in the current directory, or fully qualified name including path. Neither SET

DEFAULT nor SET PATH or FS_SET("lower"|"upper") is considered. Any standard

images of the type GIF, JPEG, PNG, BMP, XBM and XPM are supported. You will

most probably prefer 32x32 to 50x50 pixel image with transparent background;

the message text is displayed right of the image. To create the image, you may

use Gimp, Photoshop or any other software. This property is considered in GUI

mode, it is supported but ignored in Terminal i/o mode.

OBJ 84

Example:

 oMsgBox := MessageBox{"hallo;this is test;using my own image"}
 oMsgBox:Image := "/home/data/common/my_img.gif"
 oMsgBox:Exec()

oBox:Show() ─> nSelConstant

Equivalent to oBox:Exec() but return a numeric constant, representing the pressed

button. The constants are equivalent to <expN3> in the MessageBox{...} instantiation,

i.e. MBOX_OK, MBOX_YES, MBOX_NO, MBOX_ABORT, MBOX_CANCEL, MBOX_RETRY

or MBOX_IGNORE. On user-defined buttons given as string, MBOX_USER1,

MBOX_USER2 or MBOX_USER3 constant is returned. Pressing the ESC key returns

MBOX_USER0. All these constants are declared in dialog.fh

oBox:TimeOut ─> nSeconds ACCESS

oBox:TimeOut := nSeconds ASSIGN

Get or set the time-out value in seconds. Zero = 0 is the default waits forever until an

user action. Equivalent to <nTimeOut> parameter of Exec() method.

oBox:Type ─> nType ACCESS

oBox:Type := mType ASSIGN

Supported for backward compatibility to VO, don't use for new development. A

constant or combination of constants that indicates which push buttons and/or icons

are displayed. See the BOX* and BUTT* constants in the dialog.fh header file.

 OBJ 85

TextBox Class

FlagShip provides several GUI classes used for dialog communication. Apart from the general

ALERT() function, there is available special MessageBox class and its sub-classes named

TextBox, InfoBox, ErrorBox and WarningBox

TextBox Class Index

Class TextBox

Inherits from: MessageBox

Inherited by: - (none)

Class prototype: dialogclass.fh

Defines: dialog.fh, box.fh

Alternative: standard function ALERT()

or TEXTBOX()

BoxText ASSIGN Sets or redefines the displayed text

BoxType ASSIGN Type of the message box, i.e. the used icon

Buttons ACC/ASS Type and caption of the used push buttons

Caption ASSIGN Caption (title) of the message box

ColorSpec ACC/ASS Color specification for terminal i/o

DefButton ASSIGN Assigns one button as default

Font ACC/ASS Sets or redefines the used font

GuiColor ACC/ASS Color specification for GUI

HotBox ACC/ASS Box frame for terminal i/o

Exec() METHOD Display the message box and wait for user

action

Show() METHOD Equivalent to oBox:Exec()

Handle() METHOD for compatibility purpose only

TimeOut ACC/ASS time-out in seconds

Type ACC/ASS for compatibility purpose only

The TextBox is a usual MessageBox class with pre-defined properties

 oBox:BoxType := MBOX_NONE
 oBox:Caption := if(empty(cTitle), "TextBox", cTitle)

OBJ 86

TextBox Class Instantiation

Syntax 1:

oBox := TextBox {[oOwner], [cTitle], [cText]}
Syntax 2:

oBox := TextBoxNew ([oOwner], [cTitle], [cText])
Syntax 3:

oBox := MessageBox {[cText], MBOX_NONE, [ncaButt],
[iDefBut], [cTitle], [nOwner],
[oFont], .T. }

Any of the above syntax instantiate new text box object, optionally with the given

caption, text, push-button(s) and font. The default message box is modal. This

means, the application is suspended until the user acknowledges the message.

Arguments (all optional):

<oOwner> is supported for compatibility purposes to VO and is ignored.

<cText> the displayed text, i.e. the information to be printed in the message box. You

may spilt the text in several lines by using either ";" (semicolon) or LF=chr(10)

character(s). If you need to print semicolon, use "\;". To insert an empty line,

use "; ;" or ";;". If the argument is omitted, no text is displayed. Assignable

also by oBox:BoxText. See the oBox:BoxText property for details about

alignment and HTML text formatting.

<cTitle> is a caption of the message box, i.e. text displayed in the title bar of the box.

If omitted, the application name plus "Info/Warning/Error" text is used.

Assignable also by oBox:Caption

Example 1:

 oBox := TextBox{NIL, "","Hello;world!"}
 oBox:Exec()

Example 2: see also FUN.Alert(), InfoBox(), TextBox()

TextBox Class Properties

All the class properties are equivalent to MessageBox class, please refer there for further

details.

 OBJ 87

WarningBox Class

FlagShip provides several GUI classes used for dialog communication. Apart from the general

ALERT() function, there is available special MessageBox class and its sub-classes named

TextBox, InfoBox, ErrorBox and WarningBox

WarningBox Class Index

Class WarningBox

Inherits from: MessageBox

Inherited by: - (none)

Class prototype: dialogclass.fh

Defines: dialog.fh, box.fh

Alternative: standard function ALERT() or

WARNBOX()

BoxText ASSIGN Sets or redefines the displayed text

BoxType ASSIGN Type of the message box, i.e. the used

icon

Buttons ACC/ASS Type and caption of the used push buttons

Caption ASSIGN Caption (title) of the message box

ColorSpec ACC/ASS Color specification for terminal i/o

DefButton ASSIGN Assigns one button as default

Font ACC/ASS Sets or redefines the used font

GuiColor ACC/ASS Color specification for GUI

HotBox ACC/ASS Box frame for terminal i/o

Exec() METHOD Display the message box and wait for user

action

Show() METHOD Equivalent to oBox:Exec()

Handle() METHOD for compatibility purposes only

TimeOut ACC/ASS time-out in seconds

Type ACC/ASS for compatibility purposes only

The WarningBox is an usual MessageBox class with pre-defined properties

 oBox:BoxType := MBOX_WARNING
 oBox:BoxText := if(empty(cText), "Warning ...", cText)
 oBox:Caption := if(empty(cTitle), "Warning", cTitle)

OBJ 88

WarningBox Class Instantiation

Syntax 1:

oBox := WarningBox {[oOwner], [cTitle], [cText]}
Syntax 2:

oBox := WarningBoxNew ([oOwner], [cTitle], [cText])
Syntax 3:

oBox := MessageBox {[cText], MBOX_WARNING,
[ncaButt], [iDefBut], [cTitle],
[nOwner], [oFont], .T. }

Syntax 4:

Alert(cText, [aButt]) -> nSelected

Any of the above syntax instantiate new warning box object, optionally with the given

caption, text, push-button(s) and font. The default message box is modal. This

means, the application is suspended until the user acknowledges the message.

Arguments (all optional):

<oOwner> is supported for compatibility purposes to VO and is ignored.

<cText> the displayed text, i.e. the information to be printed in the message box. You

may spilt the text in several lines by using either ";" (semicolon) or LF=chr(10)

character(s). If you need to print semicolon, use "\;". To insert an empty line,

use "; ;" or ";;". If the argument is omitted, no text is displayed. Assignable

also by oBox:BoxText. See the oBox:BoxText property for details about

alignment and HTML text formatting.

<cTitle> is a caption of the message box, i.e. text displayed in the title bar of the box.

If omitted, the application name plus "Info/Warning/Error" text is used.

Assignable also by oBox:Caption

Example 1:

 oBox := WarningBox{NIL, "My Warning","Something unusual happen"}
 oBox:Exec()

Example 2: see also FUN.Alert(), InfoBox(), TextBox()

WarningBox Class Properties

All the class properties are equivalent to MessageBox class, please refer there for further

details.

 OBJ 89

Font Class

This class is used to hold the font information. It is available in all i/o modes, but a meaningful

information is given in the GUI mode only.

The Font Class is a collection of attributes of a font. When a text is drawn in GUI mode, it

always use a specified or the default font. The most important attributes of a Font are

FontFamily(), SizePoint() and Weight(). The used attributes, e.g. italic, underline, striked thru,

bold etc. can either be set and retrieved at once by Attrib() or separately be the corresponding

method.

As with other GUI classes in FlagShip, the general Fontclass is splitted into three different sub-

classes: _gFont for GUI based application, _tFont for terminal/text based, and _bFont for basic

i/o. Here, only the _gFont class makes sense and has the functionality described below. To

enable a cross-compile-compatibility, the properties of _gFont are available also in the two

other classes (tFont and bFont), but they usually have no action and return default value only.

The Font class is used in the Application Window for specifying the font appearance of the

main window. For the user window (SDI or MDI), there are two fonts available, one for

displaying of text (e.g. @..SAY..) and one for the data entry (e.g. @..GET..). These default

windows are set automatically on start-up of the application, i.e. during the instantiation of the

Application Window class. You may override these defaults either before creating of the

Application Window (usually in the InitIo() modifiable function), or anytime later by using the

oApplic:Font object.

Selecting a font is not a trivial operation. The font manager needs to search the system for

installed fonts and theirs attributes. The font matching algorithm works as follows: First an

available font family is searched for the given FontFamily or FontName. If the requested is not

available, the style hint given as Attrib() is used to select a replacement family. If the style hint

has not been set, "helvetica" will be used. The following attributes are then matched, in order

of priority: character set, pitch, point size, weight, italic. If, for example, a font with the correct

character set is found, but all other attributes do not match, this font is even though used,

instead of a font with the wrong character set but with all other attributes correct.

OBJ 90

Font Class Index

Class Font = _gFont, _bFont, _tFont

Inherits from: - (none)

Inherited by: - (none)

Class prototype: fontclass.fh

Defines: font.fh

Ascent ACCESS Distance from base line to the uppermost line

Attrib() METHOD Returns or set attributes of this font

AttribChar() METHOD Returns or set attributes of this font

Bold ACC/ASS Gets or sets the bold attribute for this font

CharSet() METHOD Sets and/or return the font character set

CharSetName() METHOD Returns the used charset as string "FONT_..."

CloneTo() METHOD Copies current font properties to other object

Dialog() METHOD Lets the user modify a font by a modal dialog

FontFamily ACC/ASS Returns or sets the desired font family name

FontFamily() METHOD alternative to the same named ACCESS or ASSIGN

FontName ACC/ASS Sets and/or return the desired font name

FontName() METHOD Sets and/or return the desired font name

FontPtr ACCESS Return the ptr to C++ font class

Height() METHOD Retrieves the highest char of the font in pixel

IsEqualTo() METHOD Compares Properties of current and other font

Italic ACC/ASS Gets, sets or clears italic attrib for this font

LineHeight() METHOD Retrieves the height of one row (line) in pixel

Lenght() METHOD Retrieves the size of passed text

Name ACC/ASS same as FontName Acc/Ass

Normal ACC/ASS Checks or sets the "normal" attribute

Pitch ACC/ASS Checks, sets or clears variable or fixed pitch

Size ACC/ASS Sets/returns the size of the font in points

SizePixel() METHOD Sets/returns the size of the font in pixels

SizePoint() METHOD Sets/returns the size of the font in points

StrikeThru ACC/ASS Checks, sets or clears the striked-thru attrib

Underline ACC/ASS Checks, sets or clears the underlined attribute

Width() METHOD Retrieves the width of the largest character

WidthChar() METHOD Returns the total width of the given string

WidthMaxChar() METHOD Return the width of the largest char in string

 OBJ 91

Font Class Instantiation

Font { [expC1], [expN2], [expC3] } ─> oFont CREATOR

FontNew ([expC1], [expN2], [expC3]) ─> oFont CREATOR, altern. syntax

Instantiates the Font object of a _gFont, _tFont or _bFont sub-class, in dependence

on the compiler switches or latest at run-time. For size-and speed-sensitive

applications, you may directly use the sub- class creators instead. Arguments

(optional):

<expC1> : The desired font family name, see details in oFont:FontFamily. The given

family name is case insensitive. If <expC1> is not given, NIL or empty, the default

desktop font is used.

<expN2> : The desired font size in Points. You may specify or change the font size

later by oFont:SizePoint() or oFont:SizePixel(). If <expN2> is not given, or is

NIL or 0 (zero), the default desktop size is used.

<expC3> : optional font attributes, any combination of letters "N" = normal, "B" = bold,

"I" = italic, "U" = underline, "S" = striked thru. You may check or change the font

attribute later by oFont:Normal, oFont:Bold, oFont:Italic, oFont:Underline and

oFont:StrikeThru

The default character set in GUI mode (when assigning new font) is

FONT_ISO8859_15 (=ISO-8859-15, Latin-9) which is nearly equivalent to

FONT_ISO8859_1 (=ISO-8859-1, Latin-1) but contains also Euro sign, see details in

http://en.wikipedia.org/wiki/Iso-8859-15 This default setting can be changed by

assigning
 _aGlobSetting[GSET_G_C_FONTCHARSET] := "FONT_ISO8859_15" // def

Example 1: instantiation of oFont:

 oFont1 := Font {"Times", 15}
 oFont2 := Font { }
 oFont3 := Font {"Arial", 12, "Bu" }
 ? "oFont1=", oFont1:FontFamily, "size=", oFont1:SizePixel()
 ? "oFont2=", oFont2:FontFamily, "size=", oFont2:SizePixel()
 ? "oFont3=", oFont3:FontFamily, "size=", oFont3:SizePixel(), ;
 "attrib=", oFont3:AttribChar(), "bold=", oFont3:Bold, ;
 "underline=", oFont3:Underline, "italic=", oFont3:Italic

Example 2: instantiation of gAppWindow and changing the default font of the main

window:

 #include "font.fh"
 // oAppWindow := gAppWindow { } // done usually in the InitIo(),
 // // not in the application !
 oFont := oAppWindow:Font
 oFont:SizePixel(10) // == oAppWindow:Font:SizePixel(10)
 oFont:Attrib(FONT_HELVETICA + FONT_NORMAL + ;
 FONT_UPRIGHT + FONT_VAR_PITCH)
 oAppWindow:Display()

OBJ 92

Font Class Properties

oFont:Ascent ─> nPixel ACCESS

Returns the distance from the base line to the uppermost line where pixels may be

draw. the return value is in pixels.

oFont:Attrib ([expN1]) ─> iFontAtrib

Returns or sets the binary or-ed (or added) attribute of this font. Argument (optional):

<expN1> is the font attribute to be set. Either a single constant or an addition of max.

each one attribute from these groups:
Weight: FONT_LIGHT, FONT_NORMAL (default), FONT_DEMIBOLD,
 FONT_BOLD, FONT_BLACK, FONT_25PERCENT, FONT_50PERCENT,
 FONT_63PERCENT, FONT_75PERCENT, FONT_87PERCENT
Slant: FONT_UPRIGHT (default), FONT_ITALIC
Style: FONT_SANSSERIF, FONT_SERIF, FONT_TYPEWRITER, FONT_OLDENGLISH,
 FONT_SYSTEM, FONT_HELVETICA, FONT_ARIAL, FONT_SWISS, FONT_TIMES,
 FONT_ROMAN, FONT_COURIER, FONT_MODERN, FONT_DECORATIVE
Pitch: FONT_VAR_PITCH, FONT_FIX_PITCH
Special: FONT_STRIKED, FONT_STRIKED_OFF, FONT_UNDERL,
 FONT_UNDERL_OFF

Returns: binary or-ed attributes of the currently selected font (corresponding

to ::FontFamily), before new attributes (if any) are set. You can determine the single

attribute by BinAND() the return value with the attribute constant.

All the above constants are defined in the font.fh header file. Note that the font

manager will try to set either your required attribute, or one close to, since most of

the attributes are dependent on the available font properties.

Example: sets a new font and prints some of its attributes

 local oFont := oFont { , 12 }
 local iAttrib, iAttrOld
 iAttrOld := oFont:Attrib(FONT_MODERN + FONT_UNDERL + ;
 FONT_LATIN1 + FONT_BOLD)
 ? "Font ", oFont:FontName, "->", oFont:FontFamily, ;
 "size in pixel", ltrim(oFont:SizePixel))
 iAttrib := oFont:Attrib()
 if binAND(iAttrib, FONT_LIGHT) != 0
 ?? " light"
 elseif binAND(iAttrib, FONT_NORMAL) != 0
 ?? " normal"
 elseif binAND(iAttrib, FONT_DEMIBOLD) != 0
 ?? " demibold"
 elseif binAND(iAttrib, FONT_BOLD) != 0
 ?? " bold"
 else
 ?? " black"
 endif
 if binAND(iAttrib, FONT_UPRIGHT) != 0

 OBJ 93

 ?? " upright/roman "
 elseif binAND(iAttrib, FONT_ITALIC) != 0
 ?? " italic "
 endif

See also oFont:Bold, oFont:CharSet(), oFont:Italic, oFont:Normal, oFont:Pitch,

oFont:StrikeThru, oFont:Underline

Supported in GUI mode only, other i/o modes does not set anything and returns 0

(zero) which signals that the requested attribute is not available.

oFont:AttribChar ([expC1]) ─> cFontAtrib

Returns or sets attribute of this font given as mnemonic character(s).

Argument (optional):

<expC1> is the font attribute to be set. Any combination of letters "N" = normal, "B"

= bold, "I" = italic, "U" = underline, "S" = striked thru. You may check or change

the font attribute later by oFont:Normal, oFont:Bold, oFont:Italic, oFont:Underline

and oFont:StrikeThru or explicit by oFont:Attrib(value)

Returns: a constant same as in <expC1>, determined at the time of entering this

method.

oFont:Bold ─> lStatus ACCESS

oFont:Bold := lStatus ASSIGN

Gets, sets or clears the bold attribute for this font. Fully equivalent to

oFont:Attrib(FONT_BOLD), i.e.
 isBold := binAND(oFont:Attrib(), FONT_BOLD) > 0
 isBold := oFont:Bold

and
 oFont:Bold := .T.
 oFont:Attrib(FONT_BOLD)

See also oFont:Attrib(), oFont:Italic, oFont:Normal, oFont:Pitch, oFont:StrikeThru,

oFont:Underline

Supported in GUI mode only, other i/o modes does not set anything and returns .F.

oFont:CharSet([expN1|expC1]) ─> nAttrib

Sets and/or return the font character set (codec). Argument (optional):

<expN1> is a numeric constant from font.fh representing the font character set.

FONT_ISO8859_1 = Latin-1, common in much of Europe

FONT_ISO8859_2 = Latin-2, Central and Eastern European

FONT_ISO8859_3 = Latin-3, South European

FONT_ISO8859_4 = Latin-4, North European

FONT_ISO8859_5 = Latin/Cyrillic

FONT_ISO8859_6 = Latin/Arabic

OBJ 94

FONT_ISO8859_7 = Latin/Greek with Euro sign

FONT_ISO8859_8 = Latin/Hebrew

FONT_ISO8859_9 = Latin-5, Turkish

FONT_ISO8859_10 = Latin-6, Nordic

FONT_ISO8859_11 = Latin/Thai alphabet

FONT_ISO8859_12 = Latin/Devanagari

FONT_ISO8859_13 = Latin-7, Baltic Rim

FONT_ISO8859_14 = Latin-8, Celtic

FONT_ISO8859_15 = Latin-9, same as Latin-1 but with Euro

FONT_ISO8859_16 = Latin-10, South-Eastern European

FONT_KOI8R = KOI8-R, Cyrillic - RFC 1489

FONT_KOI8U = KOI8-U, Cyrillic/Ukrainian - RFC 2319

FONT_SET_JA = font specific: Japanese

FONT_SET_KO = font specific: Korean

FONT_SET_TH_TH = font specific: Thai

FONT_SET_ZH = font specific: Chinese

FONT_SET_ZH_TW = font specific: traditional Chinese

FONT_SET_BIG5 = font specific: Chinese

FONT_GBK = font specific: simplified Chinese

FONT_CP1251 = Microsoft Cyrillic encoding

FONT_PT154 = Paratype Asian Cyrillic encoding

FONT_UNICODE = Unicode ISO-10646 (UTF-8 encoding)

<expC1> is a string, same as <expN1>, e.g. "FONT_ISO8859_1"

The default character set in GUI mode (when assigning new font) is

FONT_ISO8859_15 (=ISO-8859-15, Latin-9) which is nearly equivalent to

FONT_ISO8859_1 (=ISO-8859-1, Latin-1) but contains also Euro sign, see details in

http://en.wikipedia.org/wiki/Iso-8859-15 This default setting can be changed by

assigning

 _aGlobSetting[GSET_G_C_FONTCHARSET] := "FONT_ISO8859_15" // def

Returns: a constant same as in <expN1>, determined at the time of entering this

method. To get the name as string, use :CharSetName()

See also oFont:Attrib() and oFont:CharSetName()

Supported in GUI mode only, other i/o modes returns 0 (zero)

oFont:CharSetName() ─> cCharset

Similar to CharSet() but returns the used charset as string "FONT_..."

oFont:CloneTo(expO1) ─> oFont

Clones (copies) current font properties to a destination object. Argument :

<expO1> is the destination object of class Font, which properties should be

overwritten by properties of the current object.

 OBJ 95

Returns: <expO1> self or NIL on error.

Note, you also may assign an object variable to another (e.g. oNewFont :=

oOldFont). But the assignment does not copy the object, it creates only a "link" to

the target, so any change on one object reflects also to the other object. On the other

hand, this oFont: CloneTo() method copies the current properties (all font attributes)

to the target, whereby both the source and target objects remain independent from

each other. This behavior is comparable to the standard function ACLONE() vs. an

array assignment.

Example:

 oFont1 := Font {"Courier"}
 oFont2 := Font { }
 ? oFont1:FontFamily, oFont2:FontFamily // Courier Helvetica
 oFont1:CloneTo(oFont2)
 ? oFont1:FontFamily, oFont2:FontFamily // Courier Courier
 ? oFont1:IsEqualTo(oFont2) // .T.

Supported in GUI mode only, other i/o modes returns NIL

oFont:Dialog() ─> lChanged

Lets the user modify attributes of the current font object by a modal dialog: Supported

in GUI mode only, other i/o modes do nothing and returns .F.

Returns: .T. and the modified font object if the user clicked "OK" button. Otherwise .F.

and the original unmodified object if the user clicked "Cancel" or closed the dialog

window.

Example:

 oFont := oAppWindow:Font
 ? "current font:", oFont:FontFamily, ;
 "size pixel/pt:", ltrim(oFont:sizePixel), ltrim(oFont:sizePoint)
 lChanged := oFont:Dialog()
 ? if (lChanged, "-changed-", "-unchanged-"), ;
 "new font:", oFont:FontFamily, ;
 "size pixel/pt:", ltrim(oFont:sizePixel), ltrim(oFont:sizePoint)

OBJ 96

oFont:IsEqualTo(expO1) ─> lEquiv

Compares the current font properties with other font object.

<expO1> is the second object of class gFont, which properties should be compared

with properties of the current font object.

Returns: logical .T. if all properties and attributes of both objects are equivalent, .F.

otherwise

oFont:FontFamily ─> cName ACCESS

oFont:FontFamily := cName ASSIGN

oFont:FontFamily([cName]) ─> cName METHOD

Sets a desired font, or return the truly selected font family name. Note, the font

desired to be set may differ from the returned font family, depending on the installed

fonts found by the font manager. To set a font name, you may specify

• either usual X11 or Win32 name, such as "Helvetica", "Arial", "Times", "Courier",

"OldEnglish", "System", "AnyStyle", "SansSerif" (= Helvetica), "Serif" (= Times),

"TypeWriter" (= Courier), "Decorative" (= OldEnglish), "Swiss" (= Helvetica) . The

string with the family name is case insensitive.

• or a constant from the font.fh file specifying both the font and size:

FONTMODERN8, FONTMODERN10, FONTMODERN12, FONTROMAN10,

FONTROMAN12, FONTROMAN14, FONTROMAN18, FONTROMAN24, FONTSWISS8,

FONTSWISS10, FONTSYSTEM8. These constants are for backward compatibility

purposes to VO only. It is not recommended to use them for new applications.

The font manager will try to find the desired font or at least a font which is close to

the given one. You may check the currently used font family by access

oFont:FontFamily after assigning a font.

See also "Selecting a font" at the begin of this class description, oFont:FontName()

and Style in oFont:Attrib()

Example:

 oFont := oFont { "Courier" }
 oFont:FontFamily := "Arial"
 ? oFont:FontFamily // "Helvetica"
 ? oFont:FontName() // "Arial"

Supported in GUI mode only, other i/o modes does not set anything and returns ""

(null-string)

 OBJ 97

oFont:FontName ─> cName ACCESS

oFont:FontName := cName ASSIGN

oFont:FontName([cName]) ─> cName

Sets and/or return the desired font name. Note, the font desired to be set may differ

from the really used font family (::FontFamily), depending on the installed fonts found

by the font manager. This oFont:FontName() will return the last desired name, whilst

the oFont:FontFamily() the really used font name/family. See also oFont:FontFamily

for further details.

Supported in GUI mode only, other i/o modes does not set anything and returns ""

(null-string)

oFont:Length(cString) ─> nSize

Returns the number of characters of the given string. In GUI mode with Unicode font,

each glyph is counted as 1 instead of used characters for.

Supported in GUI mode only, other i/o modes returns LEN(cString)

oFont:Height() ─> nPixelSize

Retrieves the highest character of the currently used font in pixel. See also

oFont:LineHeight() and example in oFont:Width()

Supported in GUI mode only, other i/o modes returns 1

oFont:Italic ─> lStatus ACCESS

oFont:Italic := lStatus ASSIGN

Gets, sets or clears the italic attribute for this font. Fully equivalent to

oFont:Attrib(FONT_ITALIC), i.e.
 isItalic := binAND(oFont:Attrib(), FONT_ITALIC) > 0
 isItalic := oFont:Italic

and
 oFont:Italic := .T.
 oFont:Attrib(FONT_ITALIC)

See also oFont:Attrib(), oFont:Bold, oFont:Normal, oFont:Pitch, oFont:StrikeThru,

oFont:Underline

Supported in GUI mode only, other i/o modes does not set anything and returns .F.

oFont:LineHeight() ─> nPixelSize

Retrieves the height of one row (line) in pixel. The return value is usually equivalent

to oFont:Height() but may be slightly larger for some fonts. See example in

oFont:Width()

Supported in GUI mode only, other i/o modes returns 1

OBJ 98

oFont:Name ─> cName ACCESS

oFont:Name := cName ASSIGN

Same as oFont:FontName Access/Assign

oFont:Normal ─> lStatus ACCESS

oFont:Normal := lStatus ASSIGN

Checks, or sets the "normal" font attribute. Assigning .T. clears the Bold, Italic,

Underline and StrikeThru flag, assigning .F. do not set or clear anything. Equivalent

to oFont:Attrib (FONT_NORMAL), i.e.
 isNormal := binAND(oFont:Attrib(), FONT_NORMAL) > 0
 isNormal := oFont:Normal

and
 oFont:Normal := .T.
 oFont:Attrib(FONT_NORMAL)

See also oFont:Attrib(), oFont:Bold, oFont:Italic, oFont:Pitch, oFont:StrikeThru,

oFont:Underline

Supported in GUI mode only, other i/o modes does not set anything and returns .T.

oFont:Pitch ─> lStatus ACCESS

oFont:Pitch := lStatus ASSIGN

Checks, sets or clears the variable/proportional (.T.) or fixed (.F.) pitch attribute of

this currently used font. Fully equivalent to oFont:Attrib(FONT_VAR_PITCH), i.e.
 isFixPitch := binAND(oFont:Attrib(), FONT_VAR_PITCH) == 0
 isVarPitch := binAND(oFont:Attrib(), FONT_VAR_PITCH) > 0
 isVarPitch := oFont:Pitch

and
 oFont:Pitch := .T.
 oFont:Attrib(FONT_VAR_PITCH)

See also oFont:Attrib(), oFont:Bold, oFont:Italic, oFont:Normal, oFont:StrikeThru,

oFont:Underline

Supported in GUI mode only, other i/o modes does not set anything and returns .F.

oFont:Size ─> nPointSize ACCESS

oFont:Size := nPointSize ASSIGN

Equivalent to nPointSize := SizePoint() or SizePoint(nPointSize)

 OBJ 99

oFont:SizePixel([expN1]) ─> nPixelSize

Sets and/or returns the size of the current font in pixels. Argument (optional):

<expN1> is the font size in pixel to be set. If not given, or is NIL or 0, the current size

remain unchanged.

Returns: the current font size at the time of entering the method.

See example in oFont:Width()

Supported in GUI mode only, other i/o modes does not set anything and returns 1

oFont:SizePoint([expN1]) ─> nPointSize

Sets and/or returns the size of the current font in points (1/72 inch). Argument

(optional):

<expN1> is the font size in points to be set. If not given, or is NIL or 0, the current

size remain unchanged.

Returns: the current font size at the time of entering the method.

See example in oFont:Width()

Supported in GUI mode only, other i/o modes does not set anything and returns 1

oFont:StrikeThru ─> lStatus ACCESS

oFont:StrikeThru := lStatus ASSIGN

Checks, sets or clears the striked-thru attribute of this font. Fully equivalent to

oFont:Attrib(FONT_STRIKED), i.e.

 isStrikedThru := binAND(oFont:Attrib(), FONT_STRIKED) > 0
 isStrikedThru := oFont:StrikeThru

and

 oFont:StrikeThru := .T.
 oFont:Attrib(FONT_STRIKED)

See also oFont:Attrib(), oFont:Bold, oFont:Italic, oFont:Normal, oFont:Pitch,

oFont:Underline

Supported in GUI mode only, other i/o modes does not set anything and returns .F.

OBJ 100

oFont:Underline ─> lStatus ACCESS

oFont:Underline := lStatus ASSIGN

Checks, sets or clears the underlined attribute of this font. Fully equivalent to

oFont:Attrib(FONT_UNDERL), i.e.

 isUnderlined := binAND(oFont:Attrib(), FONT_UNDERL) > 0
 isUnderlined := oFont:Underline

and

 oFont:Underline := .T.
 oFont:Attrib(FONT_UNDERL)

See also oFont:Attrib(), oFont:Bold, oFont:Italic, oFont:Normal, oFont:Pitch,

oFont:StrikeThru

Supported in GUI mode only, other i/o modes does not set anything and returns .F.

oFont:Width() ─> nPixelSize

Retrieves the width (in pixel) of the largest character in the current font. Example:

 oFont := oFont { "SansSerif", 14 }
 ? "Font used = ", oFont:FontFamily() // helvetica
 ? "size in Point = ", oFont:SizePoint() // 14.00
 ? "size in Pixel = ", oFont:SizePixel() // 15
 ? "max h x w = ", ltrim(oFont:Height()) + " x " + ;
 ltrim(oFont:Width()) // 17 x 15
 ? "max of 'aXMZ5'= ", oFont:WidthMaxChar("aXMZ5") // 13
 ? "width 'aXMZ5'= ", oFont:WidthChar("aXMZ5") // 48
 ? "line height = ", oFont:LineHeight() // 17

Supported in GUI mode only, other i/o modes returns 1

oFont:WidthChar(cString) ─> nPixelSize

Returns the total width (in pixel) of the given string. In GUI mode with Unicode font,

the glyph width is counted instead of the size of used characters for. See example in

oFont:Width()

Supported in GUI mode only, other i/o modes returns LEN(cString)

oFont:WidthMaxChar(cString) ─> nPixelSize

Determine and return the width (in pixel) of the largest character in a given string.

With variable font width, this value will usually be smaller for alpha-numeric chars

than the value returned by oFont:Width(). See example in oFont:Width()

Supported in GUI mode only, other i/o modes returns 1

 OBJ 101

GET Class

The GET class provides a mechanism for interactive editing of database fields and variables.

In FlagShip, the GET class is generally used to perform @...GET and READ commands. It

also enables the creation of user- defined, screen-oriented input/output routines. The methods

included make mechanisms for formatting and editing data, cursor navigation and data

validation available.

The internal data of the GET object is stored in a normal FlagShip variable or an array element

which is created by the GETNEW() function.

Normally, a GET object is associated with a particular input/output variable which stores the

edited data. The GET object does not directly access this variable; instead, the variable is

manipulated by evaluating a supplied code block. When a GET object is created using the

standard @...GET command, an internal code block is automatically created which provides

access to the variable named in the command. When the user assigns another code block to

the BLOCK instance, it becomes the preferred.

Example:

 LOCAL mystr := "any text" + space(100)
 @ 5,10 GET mystr PICTURE "@!S20" COLOR "W+/B,N/W,,,R+/B" ;
 WHEN !EMPTY(mystr) VALID ISCHAR(mystr)
 READ

is equivalent to:

 LOCAL mystr := "any text" + space(100)
 LOCAL getarr[1]
 LOCAL myblock := {|par| IF(par==NIL, mystr, mystr := par)}

 getarr[1] := GETNEW (5, 10, myblock, "MYSTR", ;
 "@!S20", "W+/B,N/W,,,R+/B")
 getarr[1]:PREBLOCK := { || !EMPTY(mystr) }
 getarr[1]:POSTBLOCK := { || ISCHAR(mystr) }
 READMODAL (getarr)
 getarr := {}

OBJ 102

GETNEW()

Syntax 1:

obj = GETNEW ([expN1], [expN2], [expB3], [expC4],
[expC5], [expC6], [expL7])

Syntax 2:

obj = GET {[expN1], [expN2], [expB3], [expC4],
[expC5], [expC6], [expL7] }

Purpose:

Creates a new, empty GET object, optionally initialized by the supplied arguments.

Options:

<expN1> is the screen row where GET is displayed. This argument is equivalent to

assigning the obj:ROW with the same value. The valid range is 0...MAXROW(),

the default is zero.

<expN2> is the screen column where the GET is displayed. This argument is

equivalent to assigning the obj:COLUMN with the same value, the valid range is

0...MAXCOL(). The default is zero.

<expB3> is the user supplied block which accesses and modifies the input variable

or database field. This argument is equivalent to assigning the obj:BLOCK with

the same data.

<expC4> is an optional name of the input variable or database field. This argument

is equivalent to assigning the obj:NAME with the same string.

<expC5> is an optional picture specification used to format the input and output of

the GET field. This argument is equivalent to assigning the obj:PICTURE with

the same string.

<expC6> is an optional color specification used to display the GET field. This

argument is equivalent to assigning the obj:COLORSPEC with the same string.

<expL7> is an optional logical value specifying whether the <expN1> and <expN2>

parameters are given in coordinates or in pixels. When <expL7> is .T., both

parameters are interpreted as pixel. If not given, NIL or .F., the interpretation

depends on the current SET PIXEL status. This argument is set correspondingly

by [NO]PIXEL clause of @..GET command.

Returns:

<obj> is the new allocated GET object, usually assigned to a regular FlagShip

variable or to an array element.

 OBJ 103

Description:

GETNEW() creates a new, empty get object. If the optional arguments are supplied,

the corresponding instance variables are filled with these values.

To perform a READ using the GET object, at least the first three arguments must be

specified in GETNEW() or assigned using the instance variables. A READ for one

GET field stored in a regular variable can be invoked using GETREADER(), while a

READ for an array of GET objects can be invoked using the READMODAL() func-

tion.

Example:
 LOCAL myget := GETNEW(), myvar := SPACE(100)
 LOCAL getarr[2], data1 := 1, data2 := 2

 getarr[1] =GETNEW(0,0,{|par|IF(par==NIL,data1,data1:=par)})
 getarr[2] =GETNEW(1,0,{|par|IF(par==NIL,data2,data2:=par)})
 READMODAL (getarr)

 myget:ROW := 10
 myget:COLUMN := 0
 myget:BLOCK := {|par| IF(par==NIL, myvar, myvar:=par) }
 myget:COLORSPEC := "W+/B,R/W,,,B/W"
 myget:NAME := "myvar"
 myget:PICTURE := "@!S20"
 GETREADER (myget)

Classification:

programming

Class:

GET class, prototyped in <FlagShip_dir>/include/getclass.fh

Source:

The user defined READ is available in <FlagShip_dir>/system/ getsys.prg, including

the READMODAL() and GETREADER() functions.

Compatibility:

Available in FS4, C5 and VO. The alternative syntax 2 and the possibility of inheriting

it into an own subclass is available in FlagShip only.

Related:

@..GET, READ, std.fh, VALTYPE(), GETACTIVE(), GETAPPLKEY(), GETDOSETKEY(),

GETPOSTVAL(), GETPREVALID(), GETREADER(), READMODAL(), READINSERT(),

READEXIT()

OBJ 104

Get Class Index

Class Get

Inherits from: -

Class prototype: getclass.fh

Defines: getexit.fh, inkey.fh, set.fh

Assign() METHOD Assigns editing buffer to the GET variable

Backspace() METHOD Deletes character left of the cursor

Baddate ACCESS Does editing buffer contain valid date?

BadDate() METHOD internal

Block ACC/ASS Code block that associates object with variable

Buffer ACC/ASS Character editing buffer of the GET

Cargo Export Any user data

Changed ACCESS Has the get:BUFFER changed?

ClassName() METHOD Return "GET"

Clear ACC/ASS Clear buffer before editing?

Col ACC/ASS Screen column where the GET field starts

Col() METHOD Set/get screen column or pixel of the GET field

ColorDisp() METHOD Changes the color specification

ColorSpec ACC/ASS Color attributes for the GET object

Decpos ACCESS Decimal point position within the editing buffer

Copy() METHOD Copies marked text into cut-and-paste buffer

DelEnd() METHOD Deletes rest of the editing buffer

Delete() METHOD Deletes character under cursor

DelLeft() METHOD Deletes character left of cursor

DelRight() METHOD Deletes character right of cursor

DelWordLeft() METHOD Deletes word left of cursor

DelWordLef() METHOD same as DelWordLeft()

DelWordRight() METHOD Deletes word right of cursor

DelWordRig() METHOD same as DelWordRight()

Destroy() METHOD Destroys the GET object

DestroyOnAxit ACC/ASS Should get:Destroy() be called on Axit?

Display() METHOD Displays the GET object on the screen

EmptyDate ACCESS Is the date entry empty?

End() METHOD Moves cursor to the rightmost editable position

End2Char ACC/ASS Controlls the behavior of get:End()

Exec() METHOD Process user input and editing

ExitState ACC/ASS Controlls the action on GET exit

Font ACC/ASS Font object used for GET display and processing

GetEnabled ACC/ASS Enables/disables GET object from READ process

GuiColor ACC/ASS Corresponds to GUICOLOR clause in @..GET

GuiObj2var() METHOD similar to VarPut()

GuiVar2obj() METHOD similar to VarGet()

Handler ACC/ASS Code block specifying handler for get:Exec()

 OBJ 105

Hasfocus ACCESS Has the Get field input focus?

Height ACC/ASS Height of the GUI widget

Height() METHOD same as Height ACC/ASS

HitTest() METHOD Checks if the given coordinates are in GET

Home() METHOD Moves cursor to the leftmost editable position

Home2Char ACC/ASS Controlls the behavior of get:Home()

Insert() METHOD Inserts one or more character(s) into buffer

KillFocus() METHOD Removes input focus from the GET object

Left() METHOD Moves cursor left to nearest editable position

Message ACC/ASS String displayed in the SET MESSAGE line

Minus ACC/ASS Was minus sign entered?

Move() METHOD Move GUI widget to new position

Name ACC/ASS Name of the GET variable

OnClickAction ACC/ASS Action in READ triggered by code block

OnClickKeys ACC/ASS Simulates key press, triggered by code block

Original ACCESS Copy of the variable content at begin of edit

Overstrike() METHOD Puts one or more character(s) into buffer

Paste() METHOD Copy cut-and-paste buffer into editing buffer

Picture ACC/ASS String specifying the field formatting

Pos ACCESS Curr cursor position relative to buffer begin

PostBlock ACC/ASS Code block for post-validation (VALID clause)

PreBlock ACC/ASS Code block for pre-validation (WHEN clause)

Reader ACC/ASS Code block accessing user defined READ

Rejected ACCESS Was the edit character placed into buffer?

Reset() METHOD Resets internal status information

Right() METHOD Moves cursor right to nearest editable posit

Row ACC/ASS Screen row of the GET field

Row() METHOD Set/get screen row or pixel of the GET field

SetFocus() METHOD Sets input focus to the GET object

SetCursor() METHOD Sets the cursor type and color for GUI mode

Show() METHOD Same as get:Exec()

Subscript ACC/ASS Used if the GET variable is an array element

ToDecPos() METHOD Moves cursor right of the deci point position

ToolTip ACC/ASS String displayed in GUI mode

Type ACCESS Data type of the GET variable

Typeout ACCESS Accepted cursor movement?

Undo() METHOD Resets internal GET status information

Untransfor() METHOD same as Untransform()

Untransform() METHOD Converts get:BUFFER into variable date type

UpdateBuffer() METHOD Sets get:BUFFER to current value of GET variable

UpdateBuff() METHOD same as UpdateBuffer()

VarGet() METHOD Returns current value of the GET variable

VarPut() METHOD Sets the GET variable to specified value

Width ACC/ASS Width of the GUI widget

Width() METHOD same as Width ACC/ASS

WordLeft() METHOD Moves cursor one word to the left

WordRight() METHOD Moves cursor one word to the right

OBJ 106

GET Instance Variables

get:BADDATE Access

Contains a logical value indicating that the editing buffer does not represent a valid

date if the value is TRUE. When the date is valid, or the current GET is not a date,

the value contains FALSE.

get:BLOCK Access/Assign

Contains the user supplied code block that associates the GET object with a variable.

If the object is created by the @...GET command, an internal code block is used.

When the user assigns another code block, the one stored in get:BLOCK will be

preferred.

The code block takes an optional argument the value of which is assigned to the

variable. If the argument is omitted, the code block returns the current value of the

variable, e.g. when editing the "myvar" variable or "myfld" field:

 myget:BLOCK = { |par| IF (par == NIL, myvar, myvar := par) }
 myget:BLOCK = { |par| IF (PCOUNT()=0, FIELD->myfld, ;
 FIELD->myfld := par) }

If the GET variable is an array element, you may use the get:BLOCK only for arrays

with constant indices. When using the @...GET command the subscript(s) in the

expression are stored internally. Setting and getting array elements may be done by

using the get:VARGET() and get:VARPUT() methods, which is also the preferred

method for simple variables.

get:BUFFER Access/Assign

Contains a character value which is the editing buffer used by the GET object. The

value is meaningful only when the object has input focus. At other times, the value is

mostly NIL or "", and all attempts to assign a new value do not affect the GET variable.

Note that in GUI i/o mode, the internal buffer data are stored and handled in ISO/ANSI

character set, regardless the current SET GUITRANSL TEXT on/off translation mode.

The buffer is set/translated in get:Display(), get:ASSIGN(), get:UNTRANSFORM(),

get:UPDATEBUFFER() from/to the target variable or field by considering the current

SET GUITRANSL TEXT status, or the equivalent SET SOURCE ASCII/ISO or SET

(_SET_GUIASCII) flag. So if you check or update the buffer manually and SET

(_SET_GUIASCII) is .T., access the buffer data using data := ANSI2OEM(get:BUFFER)

or assign get:BUFFER := OEM2ANSI(data)

In textual/terminal i/o mode, the current TERM (or CodePage in Windows) is

considered instead.

 OBJ 107

get:CARGO Access/Assign

Contains user data of any type, to store information retrieved later in the program.

Not used by the GET system itself.

get:CHANGED Access

Contains a logical value indicating whether the get:BUFFER has changed since the

GET has received input focus. It contains TRUE if the BUFFER has been changed

by one the edit methods; otherwise it contains FALSE. Assigning a value to

get:BUFFER or altering the GET variable will not change the state of get:CHANGED.

Get:SETFOCUS() and get:KILLFOCUS() clears it to FALSE.

get:CLEAR Access/Assign

Contains a logical value indicating whether the editing buffer should be cleared before

any values are entered. This instance is set TRUE when executing get:SETFOCUS()

or get:UNDO(), and the get:PICTURE contains the "@K" (picture function) or the GET

variable is a numeric type.

get:COL Access/Assign

get:COL([nCol], [lPixel]) Method

Contains a numeric value defining the screen column position where the GET field

starts. Equivalent to the <column> argument of the @..GET command. In GUI mode

the current SET PIXEL setting decides if the entry and return value is in coordinates

or pixels. You may override this by using the second parameter of get:COL() method,

where <lPixel> == .T. specify using pixel and <lPixel> == .F. specify using

coordinates.

get:COLORSPEC Access/Assign

Contains a character string defining the display color attributes for the GET object,

equivalent to the COLOR <color> argument of the @..GET command. The color

string must contain at least both "enhanced" and "unselected" attributes. If this

property is specified, it is always used in Terminal i/o mode. In GUI mode, it is used

only if get:GUICOLOR is not set, and when SET GUICOLOR is ON. If get:COLORSPEC

is not specified, get:Display() use the current SetColor() setting (always in Terminal

i/o, and with SET GUICOLOR ON in GUI mode). For further color information, refer

to (CMD) SET COLOR.

get:DECPOS

Contains a numeric value indicating the decimal point position within the editing

buffer, meaningful only when editing a numeric variable and when the object has

OBJ 108

input focus. If the variable and/or the picture has no decimals, this instance contains

zero.

get:DESTROYONAXIT Access/Assign

Contains optional logical value, specifying that get:Destroy() should by called at exit

of READ. Set by the CLEAR or DESTROY clause of @..GET or of READ. See

get:Destroy() for details.

get:END2CHAR Access/Assign

Contains a logical value controlling the behavior of get:End(). If .T., get:End() moves

behind the last character in buffer not a space, .F. moves to last editable character in

buffer. The default is taken from a global variable _aGlobSetting

[GSET_L_GET_END2CHAR], which is .T. by default.

get:EXITSTATE Access/Assign

Contains a numeric value indicating the desired action, or the state when the GET

object was exited and is used in the user-modifiable READ (see <FlagShip_dir>/

system/getsys.prg).

Val getexit.fh Description

0 GE_NOEXIT No exit attempted, prepare GET for editing

1 GE_UP Go to previous GET

2 GE_DOWN Go to next GET

3 GE_TOP Go to first GET

4 GE_BOTTOM Go to last GET

5 GE_ENTER Normal end of GET editing

6 GE_WRITE Terminate READ, save GET

7 GE_ESCAPE Terminate READ, do not save GET

7 GE_EXIT same as GE_ESCAPE

8 GE_WHEN WHEN clause unsatisfied

9 GE_MOUSE Mouse button clicked

get:FONT Access/Assign

Contains font object used for the GET display and processing, or NIL if not applicable.

If not specified, the default font oApplic:Font is used. Assign is considered before first

get:Display(). As opposite to standard font, this font do not influence the row and

colum coordinate. Applicable in GUI mode, ignored otherwise.

get:GETENABLED Access/Assign

Contains logical value which enables/disables the GET object from READ process

(considered in getsys.prg), default is .T. When changing this property, you may need

 OBJ 109

to re-display this GET by get:Display(.T.) when color pair#7 in COLOR or GUICOLOR

is available, for example
 @...GET varname GUICOLOR...
 atail(Getlist):GetEnabled := .F. ; atail(Getlist):Display(.T.)

get:GUICOLOR Export Access/Assign

Contains a character string defining the display color attributes for the GET object for

executable running in GUI mode. The property is set by the GUICOLOR <color>

clause of the @..GET command. The color string should contain at least both

"enhanced" and "unselected" attributes and may contain also "disabled" and

"unselectedWindow" pairs. If this property is specified, it is always used in GUI mode

and is ignored in Terminal i/o, where get:COLORSPEC apply. If get:GUICOLOR is

not specified, get:Display() use either get:COLORSPEC or SetColor(), in GUI mode

only when SET GUICOLOR is ON. For further color information, refer to (CMD) SET

COLOR.

get:HANDLER Access/Assign

Contains optional code block, used to handle keyboard input. get:Exec() passes the

current object to the code block. The default setting is get:Handler := {|obj|

GetReader(obj) } which triggers the GetReader() function available in getsys.prg

source. See also get:READER.

get:HASFOCUS Access

Contains a logical value that indicates if the GET object has input focus, set by

get:SETFOCUS(). If so, this instance contains TRUE, otherwise FALSE. See also

the GETACTIVE() function in section FUN.

get:HEIGHT Access/Assign

get:HEIGHT([nSize], [lPixel]) Method

Contains numeric value specifying the height of the GUI widget. The default is a value

of one row. The current SET PIXEL setting decides if the entry and the return value

is in coordinates or pixels. You may override this behavior by using the second

parameter of get:HEIGHT() method, where <lPixel> == .T. specify using pixel and

<lPixel> == .F. specify using coordinates.

get:HOME2CHAR Access/Assign

Contains a logical value controlling the behavior of get:Home(). If .T., get:Home()

moves to first character in buffer not a space, .F. moves to first editable character.

The default is taken from a global variable _aGlobSetting

[GSET_L_GET_HOME2CHAR], which is .T. by default.

OBJ 110

get:MESSAGE Access/Assign

Contains a character string displayed in the SET MESSAGE TO line (in Terminal i/o

mode) or in the status bar of GUI mode. The message is displayed in READ,

processed via getsys.prg when the get object receive and loose input focus. See also

get:TOOLTIP and getsys.prg

get:MINUS Access/Assign

Contains a logical TRUE value when a minus sign has been added to the editing

buffer. This is meaningful only when the object has input focus, during the editing of

a numeric variable, if the current buffer is empty (zero) and the last change to the

editing buffer was a minus sign. It is cleared to FALSE when any other change is

made to the buffer.

get:NAME Access/Assign

Contains a character string representing the name of the GET variable. This value is

optional and is only used by the GET methods to access a dynamically scoped

variable, when neither the code block, nor the address of the variable (set by

get:VARPUT()) was specified. When the object is created by the @..GET command,

this instance contains the specified variable or field name.

get:OnClickAction Access/Assign

Contains either NIL or numeric value specifying next READ action (considered in

getsys.prg handler). This request is usually set in get:Notify (or other) code block,

and is same as get:ExitState property:

Val getexit.fh Description

0 GE_NOEXIT No exit attempted, stay in GET

1 GE_UP Go to previous GET

2 GE_DOWN Go to next GET

3 GE_TOP Go to first GET

4 GE_BOTTOM Go to last GET

5 GE_ENTER Normal end of GET editing

6 GE_WRITE Terminate READ, save GET

7 GE_ESCAPE Terminate READ, do not save GET

7 GE_EXIT same as GE_ESCAPE

 get:OnClickKeys Access/Assign

Contains either NIL or a string comparable to KEYBOARD, which keys are evaluated

after exit from get:Notify (or other) code block. You may set in the code block e.g.

obj:OnClickKeys := chr(K_UP, K_UP) to skip two fields up when this field is clicked.

Considered in getsys.prg READ handler.

 OBJ 111

get:ORIGINAL Access

Contains a value of any data type that is a copy of the value in the GET variable at

the time of get:SETFOCUS(), and is therefore meaningful only when the GET has

input focus. It is used to restore the original by get:UNDO().

get:PICTURE Access/Assign

Contains a character value defining the PICTURE string that controls formatting and

editing for the GET object. It is equivalent to the PICTURE clause of the @..GET

command. On get:SETFOCUS(), this instance contents is validated and corrected

when required.

get:POS

Contains a numeric value indicating the current cursor position relative to the

beginning of the editing buffer, starting with zero. Meaningful only when the GET has

input focus. Compatibility: Clipper's get:POS starts with 1.

get:POSTBLOCK Access/Assign

Contains an optional code block, which is used to validate the value of GET variable,

and is executed when exiting the edit mode of the current GET. If specified, the code

block should return TRUE to enable exiting the GET field when in READ, or FALSE

to reenter the edit mode. When using a @..GET command, the code block body is

build from the VALID and/or RANGE clauses. GET methods do not use this instance,

but it is used by the user modifiable READ (see <FlagShip_dir>/system/ getsys.prg).

get:PREBLOCK Access/Assign

Contains an optional code block that validates GET object before entering. If

specified, the code block should return TRUE to enable editing the object, or FALSE

to skip the edit field being in READ. When using the @..GET command, the code

block body is equivalent to the WHEN clause. The GET methods does not use this

instance, but it is used by the user modifiable READ (see <FlagShip_dir>/system/

getsys.prg).

get:READER Access/Assign

Contains an optional code block to implement special READ behavior for any GET

object. If specified, the standard READMODAL() function evaluates that block to

READ the object, otherwise the default GETREADER() function (included in

getsys.prg) is used. This property is available for compatibility purposes and is nearly

equivalent to get: HANDLER, except that :READER has no default code block but

get:HANDLER has.

OBJ 112

get:REJECTED Access

Contains a logical value indicating whether the last character written to the buffer by

get:INSERT() or get:OVERSTRIKE() was placed into the BUFFER. If so, the instance

contains FALSE, or TRUE if the operation is rejected.

get:ROW Access/Assign

get:ROW([nCol], [lPixel]) Method

Contains a numeric value defining the screen row where the GET field is displayed.

Equivalent to the <row> argument of the @..GET command. In GUI mode the current

SET PIXEL setting decides if the entry and the return value is in coordinates or

pixels.You may override this behavior by using the second parameter of get:ROW()

method, where <lPixel> = .T. specify using pixel and <lPixel> == .F. specify using

coordinates.

get:SUBSCRIPT Access/Assign

Contains an array of numeric values representing the dimensions of a GET array

element, if such is used; or NIL if a regular variable is used. It is assigned by the

standard @..GET command. For example, get:SUBSCRIPT contains {5,4,2} for

@..GET xyz[5,4,2] or {15} when executing @..GET xyz[15].

get:TOOLTIP Access/Assign

Contains a character string displayed in GUI mode in small popup window when the

mouse cursor is placed over the GET field. The get:TOOLTIP is ignored in other i/o

modes. See also get:MESSAGE

get:TYPE Access

Contains a string specifying the data type of the GET variable, equivalent to the result

of the TYPE() or VALTYPE() functions.

get:TYPEOUT Access

Contains TRUE, if the most recent method attempted to move the cursor out of the

editing buffer, or if there are no editable positions in the buffer. FALSE indicates a

correct cursor movement. The instance is reset by any cursor movement method.

get:WIDTH Access/Assign

get:WIDTH ([nSize], [lPixel]) Method

Contains numeric value specifying the width of the GUI widget. The default value is

set from the GET field width in accordance to PICTURE specification. The current

SET PIXEL setting decides if the entry and the return value is in coordinates or pixels.

 OBJ 113

You may override this behavior by using the second parameter of get:WIDTH()

method, where <lPixel> == .T. specify using pixel and <lPixel> == .F. specify using

coordinates.

OBJ 114

GET Init & Status Methods

[get =] get:ASSIGN ()

Assigns the value in the editing buffer to the GET variable by evaluating get:BLOCK

with the buffer contents supplied as its argument. Meaningful only when the object

has input focus.

Note that in GUI i/o mode, the internal buffer data are stored and handled in ISO/ANSI

character set. The buffer is set/translated here to the target variable or field by

considering the current SET GUITRANSL TEXT status, or the equivalent SET SOURCE

ASCII/ISO or SET(_SET_GUIASCII) flag.

In textual/terminal i/o mode, the current TERM (or CodePage in Windows) is

considered instead.

[get =] get:COLORDISP (<expC>)

Changes the color specification of the GET object, similar to issuing

get:COLORSPEC := <expC> ; get:DISPLAY().

[get =] get:DESTROY ()

Destroys the GET object and restores the screen. Called from READ via getsys.prg

when the CLEAR clause of @..GET or READ was specified, or the get:DestroyOnAxit

property was set otherwise.

[get =] get:DISPLAY ([<lForce>])

Displays the GET object on the screen. If the object has input focus, the get:BUFFER

is displayed with the "selected" color attribute and the cursor is placed at the current

editing position. If the object has no focus, the get:BLOCK is evaluated and the result

is displayed using the "unselected" color attribute. Refer to SET COLOR for an

explanation of color attributes. See also get:Exec()

Note: in GUI mode, Display() is highly optimized to avoid flickering. In some

occurrences, this avoids re-displaying of the manually changed values. In such a

case, invoke get:Display(.T.) which will force the re-display. The <lForce> parameter

is accepted also in Text mode.

[get =] get:EXEC ()

Displays the GET object on the screen and process user input using the code block

in get:Handler. It is similar to @..GET/READ command using a single Get field.

 OBJ 115

[get =] get:KILLFOCUS ()

Removes the input focus (set by get:SETFOCUS()) from the GET object, redisplays

the editing buffer and discards internal state information. Executed only when the

object has input focus, ignored elsewhere.

[get =] get:RESET ()

Resets the internal status information of the GET object to values, as when invoking

get:SETFOCUS(). Executed only when the object has input focus, ignored

elsewhere.

[aSetting =] get:SETCURSOR ([aOverwrite], [aInsert])

Sets the cursor mode and colors for READ in GUI mode.

<aOverwrite> is an array {<nMode>, <caoColor>} for overwrite mode

<aInsert> is an array {<nMode>, <caoColor>} for insert mode

<nMode> is numeric 0: cursor is default vertical bar

 1: cursor is I-beam

 2: cursor is box around the curr. Character

 3: cursor is underline

<caoColor> is either foreground color character, or color object, or an array of

RGB triplets {red,green,blue} ea 0..255

For example
 oGet:SetCursor({3,{0,255,0}}, {1,{0,0,0}})

sets green underline in overwrite and black I-beam for insert mode. You may specify

different modes/colors for each GET object. If not set, the default setting is used in

READ. This default is user modifiable by assigning mode and colors for both

overwrite and insert cursor mode
 _aGlobSetting[GSET_A_READ_GUICURSOR] := {<aOverwrite>,<aInsert>}

whereby only array for <caoColor> is accepted. For example
 _aGlobSetting[GSET_A_READ_GUICURSOR] :=
 {{2,{255,0,0}},{1,{0,0,255}}}

sets red box in overwrite and blue I-beam for insert mode. Default is
 _aGlobSetting[GSET_A_READ_GUICURSOR] := {{0,{0,0,0}},{0,{0,0,0}}}

The method returns an array {<aOverwrite>,<aInsert>} of current setting or NIL for

Terminal and Basic mode.

[get =] get:SETFOCUS ()

Sets the input focus to the GET object, initializes internal state information and the

instances of get:BUFFER, get:POS, get:DECPOS, and get:ORIGINAL. Displays the

buffer as does get:DISPLAY(), using the "selected" color attribute.

See also the GETACTIVE() function, which determines the currently focused GET

object.

OBJ 116

[get =] get:UNDO ()

Resets the internal status information of the GET object to values, as when invoking

get:SETFOCUS(). Executing get:UNDO() is equivalent to copying get:ORIGINAL into

the GET variable and then executing the get:RESET() method. Performed only when

the object has input focus, ignored elsewhere.

retval = get:UNTRANSFORM ()

Converts the get:BUFFER into the date type of the original GET variable. get:ASSIGN()

is similar to get:VARPUT(get:UNTRANSFORM()). Executed only when the object has

input focus, ignored elsewhere.

[get =] get:UPDATEBUFFER ()

Sets the get:BUFFER to the current value of the GET variable and redisplays the edit

buffer. Executed only when the object has input focus, ignored elsewhere.

retval = get:VARGET ()

Returns the current value of the GET variable. For simple variables, the <retval>

corresponds to executing the statement retval := EVAL(get:BLOCK). When the GET

variable is an array element, VARGET() is the only method to retrieve this element

value. The content of the current value is returned "as is", without any translation.

[retval =] get:VARPUT (<exp>)

Sets the GET variable to the passed value of any data type. For simple variables, the

get:VARPUT(exp) corresponds to the execution of EVAL(get:BLOCK,exp). When the

GET variable is an array element, the VARPUT() method is the only one to assign

this element value. The <exp> content is stored in the current variable "as is", i.e.

without any translation.

 OBJ 117

GET Editing Methods

All the cursor movement and editing methods will be executed only when the GET object input

focus is set by get:SETFOCUS(). Otherwise they are ignored.

[get =] get:BACKSPACE ()

Deletes the character to the left of the cursor moving the cursor one position to the

left. Ignored, when the cursor is at the leftmost editable position.

[get =] get:COPY ()

Copies currently marked text into clipboard cut-and-paste buffer. Available for GUI

mode only.

[get =] get:DELETE ()

Deletes the character under the cursor, moves the rest of the buffer one position left,

when a string variable is edited.

[get =] get:DELEND ()

Deletes the rest of the editing buffer, starting at the current cursor position.

[get =] get:DELLEFT ()

Deletes the character to the left of the cursor.

[get =] get:DELRIGHT ()

Deletes the character to the right of the cursor.

[get =] get:DELWORDLEFT ()

Deletes the word to the left of the cursor.

[get =] get:DELWORDRIGHT ()

Deletes the word to the right of the cursor.

OBJ 118

[get =] get:END ()

Moves the cursor to the rightmost editable position within the editing buffer, or to the

last character in buffer (default). You may control the behavior individually for each

GET object by get:End2Char or globally by assigning a logical value to

 _aGlobSetting[GSET_L_GET_END2CHAR] := .F. // default is .T.

to set cursor to the last editable buffer position.

[get =] get:HOME ()

Moves the cursor to the leftmost editable position within the editing buffer, or to the

first character in buffer (default). You may control the behavior individually for each

GET object by get:Home2Char or globally by assigning a logical value to

 _aGlobSetting[GSET_L_GET_HOME2CHAR] := .F. // default is .T.

to set cursor to the first editable buffer position..

[get =] get:INSERT (<char>)

Inserts one or more character(s) <char> into the editing buffer at the current cursor

position. When editing character variables, the content of the editing buffer is shifted

to the right. When editing numeric or date values, the existing content of the buffer is

shifted to the left. See also get:OVERSRTIKE().

[get =] get:LEFT ()

Moves the cursor left to the nearest editable position within the editing buffer. If there

is no editable position to the left, the cursor position remains unchanged.

[get =] get:OVERSTRIKE (<char>)

Puts one or more character(s) <char> into the editing buffer at the current cursor

position, overwriting the current buffer character. The cursor is placed one position to

the right.

Note that in GUI i/o mode, the internal buffer data are stored and handled in ISO/ANSI

character set, regardless the current SET GUITRANSL TEXT on/off translation mode.

So the passed <char> should be a part of the ISO/ANSI character set, passed e.g.

directly from Inkey().

In textual/terminal i/o mode, the current TERM (or CodePage in Windows) is

considered.

See also GETAPPLKEY() function, which applies a key value to the currently focused

get:BUFFER.

 OBJ 119

[get =] get:PASTE ()

Copies (or inserts) content of clipboard cut-and-paste buffer into current GET field.

Available in GUI mode only.

[get =] get:RIGHT ()

Moves the cursor right to the nearest editable position within the editing buffer. If there

is no editable position to the right, the cursor position remains unchanged.

[get =] get:TODECPOS ()

Moves the cursor to the immediate right of the decimal point position in the editing

buffer. Meaningful only when editing a numeric value and get:DECPOS is greater

than zero.

[get =] get:WORDLEFT ()

Moves the cursor one word to the left within the editing buffer. It skips all characters

within the current word and all leading spaces. The cursor remains on the first

character of the previous word, or at the first editable buffer position.

[get =] get:WORDRIGHT ()

Moves the cursor one word to the right within the editing buffer. It skips all characters

within the current word and all subsequent spaces. The cursor remains on the first

character of the next word, or at the last editable buffer position.

OBJ 120

ListBox Class

The ListBox Class creates and manages list boxes and combo boxes. The Achoice() function

is based on ListBox class.

List boxes and combo boxes display a list of items or choices to the user. The list box methods

will allow you to add, arrange, remove, and interrogate the list of items. When one of the items

is selected, ListBox:CurrentItem, ListBox:CurrentItemNo, ListBox:TextValue, and ListBox:

Value are updated. A list box may be bound to fields by oListBox:FillUsing().

As with other GUI classes in FlagShip, the general ListBox class is internally inherited by three

different sub-classes: _gListBox for GUI based application, _tListBox for terminal/text based

mode, and _bListBox for basic i/o mode, all defined in the boxclass.fh header file. The proper

class, corresponding to the used i/o mode, is set either at compile time with the compiler switch

"-io=g|t|b", or latest at run-time depending on the currently used environment.

Note: in the basic i/o mode, only a rough list box functionality is simulated by the sequential

in/output.

ListBox Class Index

Class ListBox

Inherits from: - (none)

Inherited by: ComboBox

Class prototype: boxclass.fh

Defines: box.fh

AddItem() METHOD Add (append) a new item to a list box

Bitmap ACC/ASS Display bitmap as list box item

Bottom ACC/ASS Bottommost screen row of the box

Buffer ACC Position in the list of the selected item

CapCol ACC/ASS Screen column of the list box's caption

CapRow ACC/ASS Screen row of the list box's caption

Caption ACC/ASS String that describes the list box caption

Cargo ACC/ASS A user value of any type

ChangeSelected() METHOD Change a range of items in a multiple selection

ClassName() METHOD For compatibility to Clipper's getsys.prg only

Clear() METHOD Clear (delete) all items in a list box

ClearSelection() METHOD Clear a multiple selection list box

Close() METHOD Closes the combo box ("drop-down list box")

ColdBox ACC/ASS Frame of list box without focus

ColorSpec ACC/ASS Color attributes for Terminal i/o

ColumnLeft ACC/ASS Number of the leftmost visible column

CurrentItem ACC/ASS String representing the displayed listbox item

 OBJ 121

CurrItemNo ACC/ASS Numeric value indicating the selected item

CurrentText ACC/ASS Fix ""

DeleteItem() METHOD Remove an item from a list box

DelItem(p1) METHOD Remove an item from a list box

DeselectItem() METHOD Turn off the selection of a specified item

Destroy() METHOD Destroys the ListBox object

Display() METHOD Show the list box and its caption on the screen

DropDown ACC Indicator of list box or combo box

Exec() METHOD Process user input, same as :Show()

Fblock ACC/ASS Code block evaluated at receiving/loosing focus

FillUsing() METHOD Data server/dictionary driver

FindItem() METHOD Search a list box for a specified item

FindText() METHOD Search a list box for a specified string

FirstSelected() METHOD Position of the 1st item in a multiple selection

Font ACC/ASS Font object used to display the list box items

GetData() METHOD Get the data portion of a list box item

GetItem() METHOD Get the item property

GetItemValue() METHOD Same as GetData()

GetText(p1) METHOD Get the item text

GuiColor ACC/ASS Color attributes for GUI mode

HasFocus ACC Indicates whether the object has input focus

HitTest() METHOD Determines if the mouse cursor is within the box

HotBox ACC/ASS Frame of list box with focus

InputBlock ACC/ASS CodeBlock for default/user keyboard handler

InsItem() METHOD Insert a new item to a list box

IsOpen ACC Indicator whether the combo box widget is visible

ItemCount ACC Number of items in the list

KillFocus() METHOD Take input focus away from a ListBox object

Left ACC/ASS Leftmost screen column of the box

ListFiles() METHOD Fill a list box with the names of matching files

Message ACC/ASS String displayed in the windows status bar

Modified ACC/ASS Ignored.

NextItem() METHOD Skip to the next available item

NextSelected() METHOD Skip to the next selected item

Open() METHOD Opens the combo box (drop-down box)

PrevItem() METHOD Skip to the previous available item

Right ACC/ASS Rightmost screen column of the box

Sblock ACC/ASS Code block evaluated at user selection

Scroll() METHOD Scrolls the contents of a list box up or down

Select() METHOD Change the selected item in a list

SelectBySingleClick ACC/ASS Allow selection by left mouse same as Enter

SelectBySpace ACC/ASS Allow selection by space key same as Enter

SelectedCount ACC Number of items selected in a multiple selection

SelectedFile ACC Selected file filled by :ListFiles()

SelectItem() METHOD Change the selected item in a list

SetData() METHOD Change the property of an available item

SetFocus() METHOD Set input focus to a ListBox object

OBJ 122

SetItem() METHOD Replaces the item property

SetText() METHOD Change/replace the displayed text of item

SetTop() METHOD Move a specified item to the top of the list box

Show() METHOD Show the list box and its caption on the screen

TextValue ACC/ASS String representing the displayed listbox item

ToolTip ACC/ASS Short pop-up info message

Top ACC/ASS Topmost screen row of the box

TopItem ACC/ASS Position of the first visible item

TypeOut ACC/ASS Indicator whether the list contains any items

Value ACC/ASS Any value associated with the specified item

ValueChanged ACC/ASS Indicator representing the status of :Value

Vscroll ACC/ASS Ignored in FlagShip

 OBJ 123

ListBox Class Instantiation

oListBox := ListBox { [nR1],[nC1], [nR2],[nC2], [lCombo], [lPixel] } [1]

oListBox := ListBoxNew ([nR1],[nC1], [nR2],[nC2], [lCombo], [lPixel]) [2]

oListBox := ListBox ([nR1],[nC1], [nR2],[nC2], [lCombo], [lPixel]) [3]

Any of the above syntax instantiate new list box (or combo box) object. Syntax [3] is

also compatible to Clipper

The list box widget (control) remains invisible until you invoke oListBox:Show() or

oListBox:Display(). This allows the program to set up the control correctly (with the

correct size, position, and any other parameters), while avoiding the "visual noise" of

changing controls. Arguments:

<nR1> topmost row in coordinates or pixel, optional. If not specified, 0 is the default

<nC1> leftmost column in coordinates or pixel, optional. If not specified, 0 is the

default

<nR2> bottom row in coordinates or pixel, optional. If not specified, MaxRow() is

default

<nC2> rightmost column in coordinates or pixel, optional. If not specified, MaxCol()

is the default

<lCombo> if true (.T.), ComboBox (drop-down box in Clipper terminology) is used

instead of ListBox. Optional, default is .F.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in

row/col coordinates, otherwise the current SET PIXEL is used. Apply for GUI

mode only, ignored otherwise.

Tuning: The coordinates <nR1>...<nC2> usually specifies the outer box frame,

common for both GUI and Terminal i/o mode. If you wish in GUI mode these

coordinates specify the inner box, set

 _aGlobSetting[GSET_G_L_LISTBOX_BOX] := .F.

If you don't wish to automatically adjust row/col in GUI mode, set

 _aGlobSetting[GSET_G_L_LISTBOX_ADJ] := .F. // default = .T.

If the above adjustment is on (.T.), you may set the pixel values

 _aGlobSetting[GSET_G_N_LISTBOX_TOP] := -2 // default
 _aGlobSetting[GSET_G_N_LISTBOX_BOT] := 2 // default
 _aGlobSetting[GSET_G_N_LISTBOX_LEFT] := -7 // default
 _aGlobSetting[GSET_G_N_LISTBOX_RIGH] := 6 // default
 _aGlobSetting[GSET_G_N_COMBO_HEIGHT] := 4 // default

OBJ 124

Example 1: This example creates and fills a list box with a list of animals:

 oLB := ListBox{5,1, 9,15, .F., .F.}
 oLB:AddItem("Mouse")
 oLB:AddItem("Cat")
 oLB:AddItem("Dog")
 iSelected := oLB:Show() // or oLB:Exec()

Example 2: see further examples in FUN.ListBox(), ComboBox(), Achoice() and

CMD.@...GET LISTBOX, @...GET COMBOBOX

Compatibility: Available also in Clipper5.3 (syntax 3 w/o <lPixel>). In VFS6 and VFS7

was <lPixel> in syntax 1 and 2 optional 5th parameter which conflicted with syntax 3.

See also: oListBox:Destroy()

mailto:CMD.@...GET

 OBJ 125

ListBox Class Properties

oListBox:AddItem(cText, [nPos], [exp], [lSelect], [lBitmap]) ─> nRet
oListBox:AddItem(cText, [exp]) ─> nRet

Add (append) a new item to a list box at a specified position or at the list end. When

present, the scroll bar is automatically updated to reflect the addition of the new item.

<cText> Character string of the item to be inserted/added and displayed in the list.

You may specify hot-key for this item by prefacing the selectable character by

"&" or "\&" or "\<". Otherwise the first character of <cText> is the hotkey.

<nPos> The position in the list box at which to insert the new item. Specify one of

the following values (default is 0 = add):

0: In an unsorted list box, adds the new item at the end of the list; if sorted,

inserts the new item at a position determined by the list box. This is the

default setting

-1: Always adds the item at the list end

1: The first position in the list box

n The n-th position in the list box

<exp> Any value associated with the specified item, which enables to associate

pertinent data with the text displayed in the list. The default is NIL

<lSelect> optional logical value specifying if the item is selectable (TRUE, the default)

or not (FALSE). This can be re-defined by oListBox:DeselectItem()

<nBitmap> optional logical value specifying that the <cText> is a name of a bitmap

which should be displayed instead of the text (TRUE), or if <cText> is a usual

text value to be displayed as such (FALSE, the default).

<nRet> If the item was added, its position in the list box is returned (a value of 1

refers to the first position in the list box). If the item could not be added, 0 is

returned.

Compatibility: Available also in CL53 and VO. In VO, the 1st format is used with max.

three parameters. CL53 uses the 2nd format and the method return SELF instead.

See also: oListBox:FillUsing(), oListBox:InsItem(), oListBox:SetData(),

oListBox:SetText(), oListBox:GetData(), oListBox:GetText()

oListBox:Bitmap ─> cFile ACCESS

oListBox:Bitmap := cFile ASSIGN

<cFile> is a character string that indicates a bitmap file to be displayed as list box

item. The type of the bitmap is determined from the file name extension,

supported are currently .bmp, .gif, .jpeg, .jpg, .png, .ppm and .xpn. If no path is

OBJ 126

given, the bitmap file must reside in the same directory as the application or in a

directory specified by SET DEFAULT command. If no file is found, text "(bitmap)"

will be displayed instead of bitmap. Apply only for GUI mode, otherwise

"(bitmap)" text is displayed.

Compatibility: Available also in CL53.

not available yet

oListBox:Bottom ─> nRow ACCESS

oListBox:Bottom := nRow ASSIGN

<nRow> is a numeric value that indicates the bottommost screen row where the list

box is displayed. The input and output value is either in coordinates or in pixels,

depending on the current SET PIXEL setting.

Compatibility: Available also in CL53.

See also: oListBox:Top, oListBox:CapCol

oListBox:Buffer ─> nPos ACCESS

<nPos> is a numeric value that indicates the position in the list of the selected item.

Compatibility: Available also in CL53.

See also: oListBox:CurrItemNo

oListBox:CapCol ─> nCol ACCESS

oListBox:CapCol := nCol ASSIGN

<nCol> is a numeric value that indicates the screen column where the list box's

caption is displayed. The input and output value is either in coordinates or in

pixels, depending on the current SET PIXEL setting.

Compatibility: Available also in CL53.

See also: oListBox:CapRow, oListBox:Caption

oListBox:CapRow ─> nRow ACCESS

oListBox:CapRow := nRow ASSIGN

<nRow> is a numeric value that indicates the screen row where the list box's caption

is displayed. The input and output value is either in coordinates or in pixels,

depending on the current SET PIXEL setting.

Compatibility: Available also in CL53.

See also: oListBox:CapCol, oListBox:Caption

 OBJ 127

oListBox:Caption ─> cText ACCESS

oListBox:Caption := cText ASSIGN

<cText> is a string that describes the list box caption. When present, the & character

specifies that the character immediately following it in the caption is the list box's

accelerator key. The accelerator key provides a quick and convenient

mechanism for the user to move input focus from one data input control to a list

box. The user performs the selection by pressing the Alt key in combination with

an accelerator key. The case of an accelerator key is ignored.

Compatibility: Available also in CL53 and VO.

See also: oListBox:CapCol, oListBox:Caption

oListBox:Cargo ─> exp ACCESS

oListBox:Cargo := exp ASSIGN

<exp> is a value of any type. The ListBox:Cargo slot holds any user- definable data

which can be retrieved later. This property is not used by the standard ListBox

object itself.

Compatibility: Available also in CL53.

oListBox:ChangeSelected(oRange, [lEnable]) ─> lOk

Change a range of items in a multiple selection list box to a specified selection. This

method is intended for use with a multiple selection list box (i.e., a list box created

using the LBS_MULTIPLESEL style).

<oRange> The Range object representing the selected items.

<lEnable> The state of the selected items. If not specified, the default is TRUE.

<lOk> is TRUE (.T.) if successful; otherwise FALSE (.F.).

Compatibility: Available also in VO.

See also: oListBox:Select(), oListBox:ClearSelection()

oListBox:ClassName() ─> "LISTBOX" or "COMBOBOX"

Returns fix "LISTBOX" or "COMBOBOX".

oListBox:Clear() ─> NIL

Clear (delete) all items in a list box.

Compatibility: Available also in VO

See also: oListBox:DeleteItem(), oListBox:AddItem(), oListBox:FillUsing()

OBJ 128

oListBox:ClearSelection() ─> lOk

Clear a multiple selection list box of all selections. This method is intended for use

with a multiple selection list box (i.e., a list box created using the

LBOXMULTIPLESEL style).

<lOk> is TRUE (.T.) if successful; otherwise FALSE.

Compatibility: Available also in VO.

See also: oListBox:Select(), oListBox:ChangeSelected()

oListBox:Close() ─> self

Closes the combo box ("drop-down list box" in Clipper terminology) and restores the

screen previously visible in this area.

Compatibility: Available also in CL53.

See also: oListBox:Open()

oListBox:ColdBox ─> cBox ACCESS

oListBox:ColdBox := cBox ASSIGN

<cBox> is an optional string that specifies the characters to use when drawing a box

around the list box when it does not have input focus. Considered in Terminal

mode only, ignored in GUI. Its default value is a single line box. Predefined

<cBox> constants are in the box.fh file:

B_SINGLE Single line box

B_DOUBLE Double line box

B_SINGLE_DOUBLE Single line top/bottom, double line sides

B_DOUBLE_SINGLE Double line top/bottom, single line sides

Compatibility: Available also in CL53. This property is considered in terminal mode

only and ignored otherwise.

See also: oListBox:HotBox, oListBox:SetFocus(), @..BOX

oListBox:ColorSpec ─> cAttrib ACCESS

oListBox:ColorSpec := cAttrib ASSIGN

<cAttrib> is a character string specifying the color attributes that are used by the list

box's display() method. If the list box is a combo box (drop-down list box in

Clipper terminology), the string can contain eight color specifiers, otherwise it

should contain at least seven color specifiers for a usual list box.

 OBJ 129

Position Applies To Default value used

in <cAttrib> from curr SET COLOR

1 Unselected items, without input focus 1=Std

2 Selected item, without input focus 5=Unselected

3 Unselected items with input focus 1=Std

4 Selected item with input focus 2=Enhanced

5 The list box's border 3=Border

6 The list box's caption 1=Standard

7 The list box caption's accelerator key 4=Background

8 The list box's drop-down button 1=Standard

9 Disabled items 5=Unselected

You may change the assignment to SetColor() pair by
 _aGlobSetting[GSET_A_ACHOICE_LBOX_COLOR] := {1,5,1,2,3,1,4,1,5}

Compatibility: Available also in CL53, This property is considered in terminal mode

only and ignored otherwise. For GUI mode, see :GuiColor

See also: oListBox:HasFocus, oListBox:GuiColor, SET COLOR, SET()

oListBox:CurrentItem ─> cText ACCESS

oListBox:CurrentItem := cText ASSIGN

<cText> is a string representing the displayed list box or combo box item selected.

The ListBox:CurrentItem access also changes ListBox:CurrItemNo,

ListBox:CurrentText, ListBox:TextValue, and ListBox:Value, if there is a match

with the available display items.

Compatibility: Available also in VO

See also: oListBox:setText(), oListBox:getItem()

oListBox:CurrItemNo ─> nPos ACCESS

oListBox:CurrItemNo := nPos ASSIGN

<nPos> is a numeric value, between 1 and the ListBox:ItemCount, indicating which

item is currently selected. If no item is selected, it is 0.The ListBox:

CurrentItemNo assign also changes ListBox:CurrentItem, ListBox:TextValue,

and ListBox:Value. If the assigned <nPos> is zero, or if it exceeds the

ListBox:ItemCount, then no item will be selected. If the ListBox: CurrItemNo

assign represents a change, then ListBox: ValueChanged will be set to TRUE.

Compatibility: Available also in VO as ListBox:CurrentItemNo

See also: oListBox:CurrentItem, oListBox:getItem()

OBJ 130

oListBox:CurrentText ─> cText ACCESS

oListBox:CurrentText := cText ASSIGN

<cText> is set to the null string "" in ListBox and ComboBox, since there is no text

editing for list boxes.

Compatibility: Available also in VO

See also: oListBox:CurrentItem

oListBox:DeleteItem([nPos]) ─> lOk

Remove an item from a list box.

<nPos> The number of the item to be deleted. Valid values are 1 to

oListBox:ItemCount or 0 (the default) specifying the currently selected item.

<lOk> returns TRUE (.T.) if successful, otherwise FALSE.

Compatibility: Available also in VO

See also: oListBox:DelItem(), oListBox:Clear()

oListBox:DelItem(nPos) ─> self

This method is equivalent to oListBox:DeleteItem([nPos]) and is intended for

backward CL53 compatibility.

Compatibility: Available also in CL53

See also: oListBox:DeleteItem(), oListBox:GetItem()

oListBox:DeselectItem([nPos]) ─> lOk

Turn off the selection of a specified item in a list box. Normally, the user turns

selections off, but this method enables the program to do so also. This method is

intended for use with a multiple selection list box (i.e., a list box created using the

LBOXMULTIPLESEL style).

<nPos> The position of the item (1 to oListBox:ItemCount or 0 for the currently

selected item) to be deselected.

<lOk> returns TRUE if successful; otherwise, FALSE.

Compatibility: Available also in VO

See also: oListBox:Select(), oListBox:ChangeSelected()

 OBJ 131

oListBox:Destroy() ─> NIL

Destroys the ListBox object and restores the previous screen content. This method

can be used when a ListBox object is no longer needed. oListBox:Destroy() de-

instantiates the ListBox object and allows you to close and free any resources that

were opened or created by the object, without waiting for the garbage collector. This

method calls internally oListBox:Axit() which is the equivalence for :Destroy()

Compatibility: Available also in VO

See also: ListBox{} instantiation

oListBox:Display() ─> self

Show the list box and its caption on the screen. The list box widget (control) remains

invisible until you invoke oListBox:Display() or oListBox:Show(). This allows the

program to set up the control correctly (with the correct size, position, and any other

parameters), while avoiding the "visual noise" of changing controls.

oListBox:Display() uses the values of the following instance variables to correctly

show the list in its current context, in addition to providing maximum flexibility in the

manner a list box appears on the screen:

:Bottom, :CapCol, :CapRow, :Caption, :ColdBox, :ColorSpec, :HasFocus, :HotBox, :

ItemCount, :Left, :Right, :Style, :Top, :TopItem, :vScroll, :CurrItemNo.

This method is similar to oListBox:Show(), but does not enter the event handler

automatically, i.e. does not provide user input. The listbox page starting with :TopItem

is displayed and the method returns. With ComboBox, only the closed box is

displayed, except :Open() was called previously.

Compatibility: Available also in CL53

See also: oListBox:Show()

oListBox:DropDown ─> lCombo ACCESS

<lCombo> is a logical value indicating whether the object is a combo box (TRUE),

which is "drop-down list box" in Clipper terminology, or a usual list box (FALSE).

Compatibility: Available also in CL53

See also: ListBox{...} instantiation

OBJ 132

oListBox:Exec([naComboOpen], [naComboClose]) ─> nSelItem

This method is equivalent to oListBox:Show([naComboOpen],[naComboClose]). It

shows the list box and its caption on the screen and process keyboard/ mouse input.

In detail: It set input focus :SetFocus(), calls :Display(), enter and process the default

or user's event/keyboard handler specified in :InputBlock, then clears the input focus

by :KillFocus()

Compatibility: Available in FS only

See also: oListBox:Display, oListBox:SetFocus(), oListBox:HasFocus.

oListBox:InputBlock

oListBox:Fblock ─> bBlock ACCESS

oListBox:Fblock := bBlock ASSIGN

<bBlock> is a code block or NIL. The code block callback, when present, is evaluated

each time the ListBox object receives or loses input focus. The code block

receives two arguments: the object self and the current :HasFocus status, which

indicates whether the list box is receiving (.T.) or losing (.F.) input focus. In GUI,

the object receives focus every times the user clicks (or activates) the list box

widget and looses focus when other widget is selected. You should not use

Inkey() nor other input commands or functions in the callback UDF.

Compatibility: Available also in CL53, but Clipper does not pass any arguments to

the code block, and hence cannot use generalized but object specific code blocks

which needs to check the current oListBox:HasFocus status by itself.

See also: oListBox:HasFocus, oListBox:SetFocus(), oListBox:KillFocus(),

oListBox:Sblock

oListBox:FillUsing([aText]) ─> NIL
oListBox:FillUsing([oRdd], [field1], [field2], [field3], [field4]) ─> NIL

Specify the set of values to be displayed in the list box, using an array or a data

server. These values act as a constraint on the values that may be entered in the list

box, and optionally as a translation between program values and display values.

<aText> An array containing the values to be placed in the list box. Either one- or

multi-dimensional array may be used to define the text items shown in the list,

values returned to the program when a list item is selected, and optional flags.

Format of the <aText> array:

1. One-dimensional array containing strings to be displayed in the list.

Other item properties are set to defaults, i.e. the returned value is

NIL, the item is selectable and is not a bitmap

2. Multi-dimensional array of up to four elements each, containing [1]

the string to be displayed in the list [2] optional: the corresponding

value of any type returned to the program at selection (default is NIL),

 OBJ 133

[3] logical value indicating that the item is selectable (default is

TRUE), and [4] logical value indicating whether the item is a bitmap

whose file name is stored in the first element (default is FALSE).

<oRdd> The data server object that is to be used to provide the set of values. If not

specified, the currently selected work area is used. You also may use the

DbObject() function to provide the Rdd object.

<field1> The field name or it position in the record (corresponding to FieldPos() return

value) that is to be used for the display values. If not specified, the values of the

first field are used. The field needs to be CHAR type.

<field2> The field name or it position in the record that is to be used for the values

that are returned to the program. The field can be of any type. If the field is not

specified, NIL is used.

<field3> The name or position of a logical field that is to be used to indicate whether

the item is selectable. If not specified or if the filed is not logical type, .T. is the

default.

<field4> The name or position of a logical field that is to be used to indicate whether

the first field is a name of bitmap file. If not specified, .F. is the default.

A list box shows the set of valid values for a field. Depending on what type of list box

is used, the set of values may act as a constraint on the values that may be retrieved

or only as a suggestion. Two sets of values may be specified, allowing for translation

of values between the displayed, human-readable representation and the internal,

programmatic value.

On database use, the current record is filled first and then the database is SKIP()ped

forward filling the list box, until EOF() or until the end of scope is reached. On exit,

the database is reset to its original state, i.e. same as on entering this method.

The :FillUsing() method provides a way of specifying the values to be included in the

list all at once, instead of constructing the list item by item with the :AddItem() method.

Note that this method add the items to the list, so you may freely combine

several :FillUsing() and/or :AddItem() invocations as shown in the example.

Example:

Create a list box with different currencies, showing an explicit representation to the

user but using a different representation internally. It also adds data from a database,

selecting Asian currencies and using fields "CurrName" for the text as well as the 3rd

field for the returned value.

 oLBCurrency := ListBox{10, 10, 200, 400, , .T.} // instantiate
 oLBCurrency:FillUsing({{"U.S. Dollars", "USD"},;
 {"Can. Dollars", "CDN"},;
 {"Mexican Pesos", "MEX"},;
 {"Yen", "YEN"},;
 {"British Pounds", "UK"},;
 {"German Marks", "DM", .F.}, ;
 {"Euro", "EUR"}}) // defaults

OBJ 134

 oLbCurrency:AddItem("non selectable", -1, NIL, .F.) // separator
 USE currency INDEX currency SHARED NEW / add from dbf
 SET FILTER to upper(trim(CurrArea)) == "ASIA"
 GO TOP // find first matching
 oLbCurrency:FillUsing(NIL, "CurrName", 3) // add fields (1) and 3
 oLbCurrency:Sblock := {|obj,pos,txt,val| ;
 alert("selected text =[" + txt + "];value =[" + ;
 transform(val) + "]") } // action used
 oLBCurrency:Show() // show and process

Compatibility: Available also in VO, which supports up to two-dimensional array or up

to two fields.

See also: oListBox:AddItem(), oListBox:DeleteItem(), oListBox:Clear(),

oListBox:SetData(), oListBox:SetText(), oListBox:GetData(), oListBox:GetText()

oListBox:FindItem(cText, [lWhole]) ─> nPos

Search a list box for a specified string, and return the location of the first item in the

list box that matches it. Note, this is a subset of the oListBox:FindText() method for

VO compatibility and is equivalent to nPos := oListBox:FindText(cText, 1, .T.,

lWhole).

<cText> The text to search for.

<lWhole> Indicates how the search is to be performed. TRUE matches an exact

<cText> string to a "whole" list box item text (for example, a "can" string does

not match "scan"). FALSE finds a match for any list box prefixed by <cText> (for

example, the string "cat" would match "catalog" in the list box). The default is

TRUE.

<nPos> Returned numeric value indicating the position of the first item that contains

the matching text, if a match is found (a value of 1 refers to the first position in

the list box); otherwise 0 is returned if no match is found.

Compatibility: Available also in VO

See also: oListBox:FindText()

oListBox:FindText(cText, [nStart], [lCase], [lExact],
[lShort], [lLeftTrim], [lOnlySel]) ─> nPos

Search a list box for a specified string, and return the location of the first item in the

list box that matches it.

<cText> The text to search for.

<nStart> Optional numeric value that indicates the starting position in the list of the

search. The default is 1. The search starts from the <nStart> position to the end

of the list and, when necessary, continues from the beginning of the list to

<nStart> - 1

 OBJ 135

<lCase> Optional logical value that indicates whether the search should be case

sensitive. TRUE (default) performs the search case sensitive, FALSE searches

regardless the case.

<lExact> Optional logical value that indicates whether the search enforces an exact

comparison including length and trailing characters. TRUE value indicates to

search by an exact match using the == comparison by ignoring trailing spaces

(i.e. "catalog" would match "catalog ", but not "my catalog "); a FALSE (the

default) value compares only the <cText> size of the list text for equivalence (i.e.

"cat" would match "catalog" in the list box).

<lShort> Optional logical value indicating whether "&" shortkey should be searched

first. Default is .F.

<lLeftTrim> Optional logical value indicating whether the text should be left trimmed

first. Default is .F.

<lOnlySel> Optional logical value indicating that only selectable items should be

searched. Default is .F.

<nPos> Returned numeric value indicating the position of the first item that contains

the matching text, if a match is found (a value of 1 refers to the first position in

the list box); otherwise 0 is returned if no match is found.

Compatibility: Available also in CL53 (first 4 params only)

See also: oListBox:FindItem()

oListBox:FirstSelected() ─> nPos

Returns the position of the first item selected in a multiple selection list box, or 0 if no

item is selected. oListBox:FirstSelected() positions an imaginary cursor on the first

item of the selection. This method is intended for use with a multiple selection list box

(i.e., a list box created using the LBOXMULTIPLESEL style).

Compatibility: Available also in VO

See also: oListBox:CurrItemNo, oListBox:SelectedCount, oListBox:NextSelected(),

oListBox:Select(), oListBox:ChangeSelected(), oListBox:DeselectItem(),

oListBox:Clear()

oListBox:Font ─> oFont ACCESS

oListBox:Font := oFont ASSIGN

<oFont> is a Font object (or NIL) used to display the list box items. If not set, the

default application font oApplic:Font is used.

Compatibility: Available also in VO. Ignored in non-GUI mode.

See also: Font class, oApplic:Font

OBJ 136

oListBox:GetData([nPos]) ─> exp

Retrieves the data portion of a list box item associated with the item but not displayed

in the list.

<nPos> numeric value that indicates the position within the list of the item whose

data is being retrieved. 0 (zero, the default) specifies the currently selected item,

1 to :ItemCount is the requested item number otherwise.

<exp> Returned value of any type associated to the list box item

by :AddItem(), :FillUsing(), :SetData() etc.

Compatibility: Available also in CL53 where the parameter is not optional and which

does not support 0 for <nPos>.

See also: oListBox:GetText(), oListBx:GetItem(), oListBox:SetData(),

oListBox:SetItem()

oListBox:GetItem([nPos]) ─> aData

Retrieves the item property, i.e. the displayed text, associated data and additional

flags returning these in one-dimensional array.

<nPos> numeric value that indicates the position within the list of the item whose

data is being retrieved.0 (zero, the default) specifies the currently selected item,

1 to :ItemCount is the requested item number otherwise.

<aData> Returned one-dimensional array with four elements containing the item

properties: Element [1] is the displayed text, [2] the associated data of any type,

[3] a logical value specifying whether the item is selectable, [4] a logical value

indicating whether the 1st element is a file name of a bitmap or a usual text.

Compatibility: Available also in CL53, which requires parameter but does not support

0 input, and return only the first two array elements. The same named VO method

has different meaning and is equivalent to oListBox:GetText() in FS and CL53.

See also: oListBox:GetText(), oListBox:GetData(), oListBox:SetText(),

oListBox:SetData(), oListBox:SetItem()

oListBox:GetItemValue([nPos]) ─> exp

This is a VO equivalence for oListBox:GetData() method, and available for

compatibility purpose.

Compatibility: Available also in VO.

See also: oListBox:GetData(), oListBox:GetText(), oListBox:GetItem()

 OBJ 137

oListBox:GetText([nPos]) ─> cText

Retrieves the text portion of a list box item displayed in the list.

<nPos> numeric value that indicates the position within the list of the item whose

data is being retrieved. 0 (zero, the default) specifies the currently selected item,

1 to :ItemCount is the requested item number otherwise.

<cText> Returned character value associated to the list box item

by :AddItem(), :FillUsing(), :SetText() etc.

Compatibility: Available also in CL53 which does not support 0 input.

See also: oListBox:GetData(), oListBox:GetItem(), oListBox:SetText(),

oListBox:SetItem()

oListBox:GuiColor ─> cAttrib ACCESS

oListBox:GuiColor := cAttrib ASSIGN

<cAttrib> is a character string specifying the color attributes that are used by the list

box's display() method in GUI mode. The string can contain four color specifiers

in the SET COLOR syntax:

Position Applies To Default

in <cAttrib>

1 Unselected items, without input focus black/white

2 Selected item, without input focus white/blue

3 Unselected items with input focus black/white

4 Selected item with input focus white/blue

5 Disabled items #B0B0B0/white

To use default colors, skip it or specify N/N for the item or assign empty string "" to

disable all, which is the default setting. Note that the standard background for

selected item (with and without input focus) is usually set by the window manager

and may hence differ according to the used platform. It is usually

W+/RGB(49,106,195) = W+/#316AC3 in Windows, and W+/RGB(8,93,139) =

W+/#085D8B in Linux/KDE.

Example: display items in Listbox w/o focus on default background with grey bar,

and items in focused Listbox using default colors

 oLB := ListBox{5,1, 9,15}
 oLB:AddItem(...)
 oLB:InputBlock := ...
 // either common for all platforms:
 * oLB:GuiColor := ",W+/#C0C0C0,," // or ",W+/#C0C0C0"
 // or platform specific:
 #ifdef FS_WIN32
 oLB:GuiColor := "N/#ECE9D8,W+/#C0C0C0,N/W+,W+/#316AC3"
 #else
 oLB:GuiColor := "N/#DEDEDE,W+/#C0C0C0,N/W+,W+/#085D8B"
 #endif
 item := oLB:Show()

OBJ 138

Compatibility: This property is considered in GUI mode only and is ignored otherwise.

For Terminal i/o mode, see :ColorSpec

See also: oListBox:HasFocus, oListBox:ColorSpec, SET COLOR, SET()

oListBox:HasFocus ─> lFocus ACCESS

<lFocus> is a logical value indicating whether the object has input focus (TRUE) or

not. In GUI, the object receives focus every times the user clicks (or activates)

the widget and looses the focus when other widget is selected.

Compatibility: Available also in CL53

See also: oListBox:KillFocus, oListBox:SetFocus(), oListBox:Fblock

oListBox:HitTest(nMouseRow, nMouseCol, [lPixel]) ─> nStatus

Determines if the mouse cursor is within the region of the screen that the list box

occupies.

<nRow> Numeric value representing the current or tested screen row position of the

mouse cursor.

<nCol> Numeric value representing the current or tested screen row position of the

mouse cursor.

<lPixel> If specified TRUE, the mouse coordinates are assumed in pixel. If FALSE,

the mouse parameters are assumed in current row/col coordinates. If this

parameter is not specified (i.e. NIL), the kind of passed mouse coordinates is

determined from the current SET PIXEL setting.

<nStatus> Returned numeric value indicating the relationship of the mouse cursor

with the list box. The constants are specified in button.fh header file.

Value Constant Description

> 0 HTITEMS The mouse is located on one of the list box items

0 HTNOWHERE The mouse cursor is not within the region of the screen that the

listbox or combobox occupies

-1 HTTOPLEFT The mouse cursor is on the top left corner of the list box's border

-2 HTTOP The mouse cursor is on the list box's top border

-3 HTTOPRIGHT The mouse cursor is on the top right corner of the list box's

border

-4 HTRIGHT The mouse cursor is on the list box right border

-5 HTBOTTOMRIGHT The mouse cursor is on the bottom right corner of the list box's

border

-6 HTBOTTOM The mouse cursor is on the list box bottom border

-7 HTBOTTOMLEFT The mouse cursor is on the bottom left corner of the list box's

border

-8 HTLEFT The mouse cursor is on the list box's left border

 OBJ 139

-1000 HTSCROLLBAR The mouse cursor is on listbox scrollbar

-1025 HTCAPTION The mouse cursor is on the list box's caption

-4097 HTDROPBUTTON The mouse cursor is on the ComboBox drop-down button

-5121 HTCELL The mouse cursor is in ComboBox widget

Compatibility: Available also in CL53

See also: Mrow(), Mcol()

oListBox:HotBox ─> cBox ACCESS

oListBox:HotBox := cBox ASSIGN

<cBox> is an optional string that specifies the characters to use when drawing a box

around the list box when it has input focus. Its default value is a single line box.

Predefined <cBox> constants are in the box.fh header file:

B_SINGLE Single line box

B_DOUBLE Double line box

B_SINGLE_DOUBLE Single line top/bottom, double line sides

B_DOUBLE_SINGLE Double line top/bottom, single line sides

Compatibility: Available also in CL53. This property is considered in terminal mode

only and ignored otherwise.

See also: oListBox:ColdBox, oListBox:HasFocus, oListBox:SetFocus(),

oListBox:ColorSpec, @..BOX

oListBox:Init([par1]...[par6]) ─> self

This is an internal method invoked automatically at instantiation of the ListBox object.

It is not intended to be called by the application.

Compatibility: Available also in VO

See also: ListBox{} instantiation

oListBox:InputBlock ─> bHandler ACCESS

oListBox:InputBlock := bHandler ASSIGN

This property stores a code block, evaluated during :Show() or :Exec(). The code

block usually calls the default or user specified keyboard and mouse handler,

processing the listbox selection. The :Show() or :Exec() method passes four

parameters to it: 1) the ListBox object self, 2) the pre-selected item number, 3) and

4) an inkey() value (or an array of numeric values) specifying the keys to open or

close combo (drop-down) box, see oListBox:Show(). The code block should return

numeric value specifying the selected item number (1 to :ItemCount) or 0 on selection

abort. This return value is returned by :Show() or :Exec() and used in standard

functions based on Listbox, for example in Achoice()

OBJ 140

When :InputBlock was not instantiated yet or is NIL, the default input handler

ListBoxHandler(), available in source in listboxhand.prg, is assigned to :InputBlock

and called by :Show() or :Exec().

Alternatively, your application may call :Display() and invoke/process your input

handler directly (w/o :Show(), same as Clipper do).

Example:

 oLB := ListBox{5,1, 9,15}
 oLB:AddItem("One")
 oLB:AddItem("Two")
 oLB:AddItem("Three")
 oLB:InputBlock := {|obj,item,iOpen,iClose| ;
 myListBoxHandler(obj,item,iOpen,iClose) }
 item := oLB:Show()
 setpos(10,0)
 ? "Selected item:", ltrim(item)

Compatibility: Available in VFS only

See also: oListBox:Display(), oListBox:Show(), oListBox:Exec()

oListBox:InsItem(nPos, cText, [exp], [lSelect], [lBitmap]) ─> exp

Insert a new item to a list box at a specified position. This method is equivalent to the

oListBox:AddItem(cText,nPos,[exp],[lSelect],[lBitmap]) method.

Compatibility: Available also in CL53 which support first three parameters.

See also: oListBox:AddItem(), oListBox:GetText(), oListBox:GetItem(),

oListBox:SetData(), oListBox:SetItem(), oListBox:DeleteItem(), oListBox:Clear()

oListBox:IsOpen ─> lStat ACCESS

<lStat> is a logical value indicating whether the combo box widget is fully visible

(TRUE) or if the combo box shows the current value only (FALSE). With list box,

oListBox:IsOpen always return TRUE.

Compatibility: Available also in CL53

See also: oListBox:Open(), oListBox:Close()

oListBox:ItemCount ─> nCount ACCESS

<nCount> is a numeric value indicating the number of items in the list box.

Compatibility: Available also in CL53 and VO

See also: oListBox:AddItem(), oListBox:InsItem(), oListBox:FillUsing(),

oListBox:DeleteItem(), oListBox:Clear()

 OBJ 141

oListBox:ItemSelectable(nPos, [lSet]) ─> lRet

Set or check item to be selectable

<nPos> is a numeric value specifying the item position in the list

<lSet> is a logical value, .T. sets the item selectable, .F. disables it

<lRet> is a logical value reporting .T. when the item is selectable

See also: oListBox:AddItem(), oListBox:InsItem()

oListBox:KillFocus() ─> self

Take input focus away from a ListBox object. Upon receiving this message, the

ListBox object redisplays itself with the :ColdBox frame and, if present, evaluates the

code block specified by :Fblock. This message is meaningful only when the ListBox

object has input focus.

Compatibility: Available also in CL53.

See also: oListBox:HasFocus, oListBox:SetFocus(), oListBox:Fblock

oListBox:Left ─> nCol ACCESS

oListBox:Left := nCol ASSIGN

<nCol> is a numeric value that indicates the leftmost screen column where the list

box is displayed. The input and output value is either in coordinates or in pixels,

depending on the current SET PIXEL setting.

Compatibility: Available also in CL53.

See also: oListBox:Right, oListBox:Top, oListBox:Bottom

oListBox:ListFiles([cDir], [oFixedText], [nFileType]) ─> lOk

Fill a list box with the names of all files that match the specified path or file name.

This method is unsupported by FlagShip and hence returns FALSE. You may use

instead:

aDirList := directory(...)
oListBox:FillUsing(aDirList)

Compatibility: Available also in VO.

See also: oListBox:SelectedFile

OBJ 142

oListBox:Message ─> cText ACCESS

oListBox:Message := cText ASSIGN

<cText> is a character string displayed in the windows status bar (GUI), or in the

screen line specified by SET MESSAGE (in terminal mode).

Compatibility: Available also in CL53.

See also: oListBox:Tooltip(), SET MESSAGE, oApplic:StatusMessage()

oListBox:Modified ─> lOk ACCESS

oListBox:Modified := lOk ASSIGN

Ignored. This property include logical value that is always set to FALSE for a list box,

since it does not contain text that can be edited.

Compatibility: Available also in VO.

oListBox:NextItem() ─> self

Changes the selected item from the current item to the one immediately following it.

If necessary, :NextItem() will call its :Display() or :Scroll() method to ensure that the

newly selected item is visible. This message is meaningful only when the list box

object has input focus. As opposite to the similar oListBox:NextSelected(), this

method changes the "selected" item flag.

Compatibility: Available also in CL53.

See also: oListBox:NextSelected(), oListBox:PrevItem(), oListBox:FirstSelected(),

oListBox:Select()

oListBox:NextSelected() ─> nPos

After calling oListBox:FirstSelected(), this method is used to cycle through the

remaining items selected in a multiple selection list box. As opposite to the similar

oListBox:NextItem(), this method does not change the "selected" item flag. This

method is intended for use with a multiple selection list box.

<nPos> is a position of the next selected item in the list box, or 0 if no item is selected

or if there are no remaining items.

Compatibility: Available also in VO.

See also: oListBox:NextItem(), oListBox:FirstSelected()

 OBJ 143

oListBox:Open() ─> self

Opens the combo box (drop-down list box in Clipper terminology) and saves the

screen previously visible in this area.

To open the ComboBox, use the TAB, Space or # key, and shift-TAB or ^ key to close

the box. These keys are user-modifiable by :Exec(...) or by assigning corresponding

inkey-value(s) to

_aGlobSetting[GSET_A_COMBO_OPEN]:= {K_DOWN, K_SPACE, 35} // default
_aGlobSetting[GSET_A_COMBO_CLOSE]:= {K_TAB, K_SH_TAB, 94} // default

before invoking the oComboBox:Display() or oComboBox:Exec().

Compatibility: Available also in CL53.

See also: oListBox:Close()

oListBox:PrevItem() ─> self

Changes the selected item from the current item to the one immediately following it.

If necessary, :NextItem() will call its :Display() or :Scroll() method to ensure that the

newly selected item is visible. This message is meaningful only when the list box

object has input focus. As opposite to the similar oListBox:NextSelected(), this

method changes the "selected" item flag.

Compatibility: Available also in CL53.

See also: oListBox:NextItem(), oListBox:NextSelected(), oListBox:FirstSelected(),

oListBox:Select()

oListBox:Right ─> nCol ACCESS

oListBox:Right := nCol ASSIGN

<nCol> is a numeric value that indicates the rightmost screen column where the list

box is displayed. The input and output value is either in coordinates or in pixels,

depending on the current SET PIXEL setting.

Compatibility: Available also in CL53.

See also: oListBox:Left, oListBox:Top, oListBox:Bottom

oListBox:Sblock ─> bBlock ACCESS

oListBox:Sblock := bBlock ASSIGN

<bBlock> is a code block or NIL. The code block callback, when present, is evaluated

each time the user takes a selection in the ListBox object. Evaluated only when

the ListBox (or ComboBox) has input focus.

The code block receives four arguments in this order: 1) the object self, 2) the ordinal

position of the currently selected item in the array (i.e. :Buffer or :CurrItemNo), 3) the

OBJ 144

currently selected item text (i.e. :TextValue :CurrentItem), and 4) the associated item

value (:Value). If multiple selection is allowed and multiple items were selected, the

2nd, 3rd and 4th arguments are one-dimensional arrays in the size of :SelectedCount,

containing the selected data. You should not use Inkey() nor other input commands

or functions in the callback UDF.

Compatibility: Available also in CL53, but Clipper does not pass any arguments to

the code block; it hence cannot use generalized but object specific code blocks which

must extract the required values from the known object by itself.

See also: oListBox:HasFocus, oListBox:Buffer, oListBox:Fblock, oListBox:Text,

oListBox:Value

Example: see oListBox:FillUsing()

oListBox:Scroll(nType) ─> self

Scrolls the contents of a list box up or down.

<nType> Numeric value indicating the manner in which the scroll operation is carried

out. The HTSCROLL* constants are available in button.fh header file.

Value Constant Performs

-3074 HTSCROLLUNITDEC Scroll down one line

-3075 HTSCROLLUNITINC Scroll up one line

-3076 HTSCROLLBLOCKDEC Scroll down one window

-3077 HTSCROLLBLOCKINC Scroll up one window.

Compatibility: Available also in CL53

oListBox:Select(nPos) ─> self

Change the selected item in a list. On success, the number of selected items is set

to 1. The selection state is typically changed by the user when one of the cursor keys

is pressed or the mouse's left button is pressed when its cursor is within the ListBox

object's screen region. This method allows programmable set or change the

"selected" mode. If necessary, oListBox:Select() will call its :Display() or :Scroll()

method to ensure that the newly selected item is visible.

<nPos> is a numeric value that indicates the position in the list of the item to select.

Compatibility: Available also in CL53

See also: oListBox:NextItem(), oListBox:FirstSelected(), oListBox:NextSelected(),

oListBox:SelectItem()

 OBJ 145

oListBox:SelectBySingleClick ─> lEnabled ACCESS

oListBox:SelectBySingleClick := lEnable ASSIGN

Allow selection by single click on left mouse button, i.e. same as mouse double click

and handle it equivalent to Enter/Return. Considered/handled only in the keyboard

handler in GUI mode.

oListBox:SelectBySpace ─> lEnabled ACCESS

oListBox:SelectBySpace := lEnable ASSIGN

Allow current selection by space key, i.e. handle space equivalent to Enter/Return.

If enabled (the default), searching for an item starting with space is disabled during

the input. Considered/handled only in the keyboard handler.

oListBox:SelectedCount ─> nNum ACCESS

<nNum> is a numeric value representing the total number of items that are currently

selected in a multiple selection list box. This property is intended for use with a

multiple selection list box.

Compatibility: Available also in VO.

See also: oListBox:FirstSelected(), oListBox:NextSelected(), oListBox:Select(),

oListBox:SelectItem()

oListBox:SelectedFile ─> cTxt ACCESS

<cTxt> is a string representing the selected file in a list box previously filled by

the :ListFiles() method. In generally, the return value is equivalent to

oListBox:CurrentItem and is supported for compatibility purposes only.

Compatibility: Available also in VO.

See also: oListBox:CurrentItem, oListBox:ListFiles(), oListBox:FirstSelected(),

oListBox:NextSelected(), oListBox:Select(), oListBox:SelectItem()

oListBox:SelectItem(nPos) ─> lOk

Change the selected item in a list and on success, reset :SelectedCount to 1. This

method is fully equivalent to oListBox:Select() except the return value.

<nPos> is a numeric value that indicates the position in the list of the item to select.

Compatibility: Available also in VO

See also: oListBox:Select(), oListBox:FirstSelected(), oListBox:NextSelected(),

oListBox:SelectedCount

OBJ 146

oListBox:SetData(nPos, [exp], [lSelect], [lBitmap]) ─> lOk

Change the property of an available item.

<nPos> The position in the list box at which to insert the new item; valid values are

1 to :ItemCount or 0 for the currently selected item.

<exp> Any value associated with the specified item, which enables to associate

pertinent data with the text displayed in the list, default is NIL

<lSelect> optional logical value specifying if the item is selectable (TRUE, the default)

or not (FALSE). This can be re-defined by oListBox:DeselectItem()

<nBitmap> optional logical value specifying that the <cText> is a name of a bitmap

which should be displayed instead of the text (TRUE), or if <cText> is a usual

text value to be displayed as such (FALSE, the default).

<lOk> TRUE if the item was changed, FALSE otherwise.

Compatibility: Available also in CL53 which supports two mandatory parameters and

returns SELF.

See also: oListBox:SetText, oListBox:SetItem(), oListBox:AddItem(),

oListBox:FillUsing(), oListBox:InsItem(), oListBox:GetData(), oListBox:GetText(),

oListBox:GetItem()

oListBox:SetFocus() ─> self

Set input focus to a ListBox object. Upon receiving this message, the ListBox object

redisplays itself with the :HotBox frame and, if present, evaluates the code block

specified by :Fblock. This message is meaningful only when the ListBox object does

not have input focus. In GUI, the object receives focus also every times the user clicks

(or activates) the widget.

Compatibility: Available also in CL53.

See also: oListBox:HasFocus, oListBox:KillFocus(), oListBox:Fblock

oListBox:SetItem(nPos, aData) ─> lOk

Replaces the item property, i.e. the displayed text, associated data and additional

flags providing these in one-dimensional array.

<nPos> numeric value that indicates the position within the list of the item whose

data is being retrieved.0 (zero) specifies the currently selected item, 1

to :ItemCount is the requested item number.

<aData> is one-dimensional array with one to four elements containing the item

properties: Element [1] is the displayed text, [2] the associated data of any type,

 OBJ 147

[3] a logical value specifying whether the item is selectable, [4] a logical value

indicating whether the 1st element is a file name of a bitmap or a usual text.

<lOk> TRUE if the item was changed, FALSE otherwise.

Compatibility: Available also in CL53, which supports only the first two array

elements.

See also: oListBox:AddItem(), oListBox:SetText(), oListBox:SetData(),

oListBox:GetItem()

oListBox:SetText(nPos, cTxt) ─> lOk

Change/replace the displayed text of an available item.

<nPos> The position in the list box at which to insert the new item; valid values are

1 to :ItemCount or 0 for the currently selected item.

<cTxt> Character string of the item to be changed and displayed in the list

<lOk> TRUE if the item was changed, FALSE otherwise.

Compatibility: Available also in CL53 which returns SELF.

See also: oListBox:SetData(), oListBox:SetItem(), oListBox:AddItem(),

oListBox:FillUsing(), oListBox:InsItem(), oListBox:GetData(), oListBox:GetText()

oListBox:SetTop(nPos) ─> self

Move a specified item to the top of the list box. This method is equivalent to

oListBox:TopItem assign.

<nPos> The position in the list box which should be displayed at the top; valid values

are 1 to :ItemCount or 0 for the currently selected item.

Compatibility: Available also in VO, which returns NIL

See also: oListBox:TopItem

oListBox:Show([naComboOpen], [naComboClose]) ─> nSelItem

Show the list box and its caption on the screen and process keyboard/ mouse input.

This method set input focus :SetFocus(), calls :Display(), enter and process the

default or user's event/keyboard handler specified in :InputBlock, then clears the input

focus by :KillFocus()

Alternatively, your application may call :Display() and invoke/process your input

handler directly, w/o :Show() or :Exec(), same as Clipper do.

OBJ 148

<naComboOpen> is optional numeric value or an array of numeric values specifying

the key(s) used to open combo box (drop-down). The default setting is {K_TAB,

asc('#')}

<naComboClose> is optional numeric value or an array of numeric values specifying

the key(s) used to close combo box (drop-down). The default setting is

{K_SH_TAB, asc('^')}

Both parameters are passed to the input handler (see :InputBlock) and are

considered only for ComboBox, i.e. when the <lCombo> parameter in ListBox()

instantiation is .T., or when the object was instantiated via ComboBox{} - in both

cases the :DropDown instance returns .T.

The method returns the selected item# (1 to :ItemCount) or 0 when the user selection

was aborted. The return value is passed from the default (or by :InputBlock user-

provided) input handler.

Compatibility: Available also in VO (w/o parameters) which returns NIL

See also: oListBox:Display(), oListBox:Exec(), oListBox:InputBlock

oListBox:TextValue ─> cText ACCESS

oListBox:TextValue := cText ASSIGN

<cText> is a string representing the displayed list box or combo box item selected.

This property is equivalent to oListBox:CurrentItem access/assign.

Compatibility: Available also in VO

See also: oListBox:CurrentItem, oListBox:Value, oListBox:GetText(),

oListBox:GetItem()

oListBox:ToolTip ─> cText ACCESS

oListBox:ToolTip := cText ASSIGN

<cText> is a string representing the displayed tool tip, i.e. a short info message which

pop up's when the mouse is over the list box.

Compatibility: Available also in FS5 only, apply for GUI, ignored otherwise

See also: oListBox:Message

oListBox:Top ─> nRow ACCESS

oListBox:Top := nRow ASSIGN

<nRow> is a numeric value that indicates the topmost screen row where the list box

is displayed. The input and output value is either in coordinates or in pixels,

depending on the current SET PIXEL setting.

Compatibility: Available also in CL53

See also: oListBox:Bottom, oListBox:Left, oListBox:Right

 OBJ 149

oListBox:TopItem ─> nPos ACCESS

oListBox:TopItem := nPos ASSIGN

<nPos> is a numeric value that indicates the position in the list box of the first visible

item. Valid values are 1 to :ItemCount or 0 for the currently selected item. This

property is equivalent to oListBox:SetTop(nPos)

Compatibility: Available also in CL53, which does not support the 0 value

See also: oListBox:SetTop()

oListBox:TypeOut ─> lStat ACCESS

<lStat> A logical value that indicates whether the list contains any items. A TRUE

value indicates that the list contains selectable items; otherwise, FALSE

indicates that the list is empty. This property is equivalent to

oListBox:ItemCount != 0.

Compatibility: Available also in CL53

See also: oListBox:ItemCount

oListBox:Value ─> exp ACCESS

oListBox:Value := exp ASSIGN

<exp> Any value associated with the specified item, which enables to associate

pertinent data with the text displayed in the list, default is NIL.

Compatibility: Available also in VO

See also: oListBox:GetData(), oListBox:GetItem(), oListBox:SetData(),

oListBox:TextValue

oListBox:ValueChanged ─> lStat ACCESS

oListBox:ValueChanged := lStat ASSIGN

<lStat> A logical value representing the status of oListBox:Value. It reports whether

it has been changed from the previously selected item during the selection

process. TRUE indicates that it has been changed from the prior choice, while

FALSE indicates it has been not changed from the prior choice. The :Value may

be changed by clicking on a different item, or via the oListBox:TextValue or

oListBox:Value assigns.

Compatibility: Available also in VO

See also: oListBox:Value, oListBox:GetData(), oListBox:GetData(),

oListBox:GetItem(), oListBox:TextValue

OBJ 150

oListBox:Vscroll ─> oScroll ACCESS

oListBox:Vscroll := oScroll ASSIGN

<oScroll> In CL53, contains ScrollBar object whose orientation must be vertical.

Unsupported in FlagShip and hence the default return value is NIL.

Compatibility: Available also in CL53

 OBJ 151

MenuItem Class

The MenuItem Class is a property holder for TopBar and PopUp class.

In FlagShip, the main menu (TopBar class) with sub-menus (PopUp class) is created

automatically for GUI mode at start-up of the application, called from initio.prg. The source of

the main menu is available in <FlagShip_dir>/system/initiomenu.prg. You may modify the

default menu any time later, see example in <FlagShip_dir>/examples/menu.prg

As with other GUI classes in FlagShip, the general MenuItem class is internally inherited by

three different sub-classes: _gMenuItem for GUI based application, _tMenuItem for terminal/

text based mode, and _bMenuItem for basic i/o mode, all defined in the menuclass.fh header

file. The proper class, corresponding to the used i/o mode, is set either at compile time with

the compiler switch "-io=g|t|b", or latest at run-time depending on the currently used

environment. Note: in the basic i/o mode, only a rough MenuItem functionality is simulated by

the sequential in/output.

MenuItem Class Index

Class MenuItem

Inherits from: - (none)

Inherited by: - (none)

Class prototype: menuclass.fh

Defines: button.fh, inkey.fh

Accelerator() METHOD accelerator key or text

Caption ACC/ASS item text or separator

Checked ACC/ASS check mark to the left?

ClassName() METHOD "MENUITEM" for Clipper compatibility

Column() METHOD set/get column

Data ACC/ASS CodeBlock or oPopUpMenu object or NIL

Enabled ACC/ASS can item be selected?

Font ACC/ASS the item's font

Id ACC/ASS unique identifier or 0

IsCodeblock() METHOD is MenuItem:Data a CodeBlock?

IsPopUp() METHOD is MenuItem:Data popup object?

IsSeparator() METHOD is MenuItem a separator?

Message ACC/ASS status bar message or ""

Row() METHOD set/get row

Select() METHOD FS5

Shortcut ACC/ASS accelerator in CL53 terminology

ShortKey ACC/ASS Inkey() lower value for quick access, def=0

ShortPos ACCESS index of Shortkey in Caption (def=0)

Style ACC/ASS delimiter, ignored by GUI

_setCurrent() METHOD for internal use

OBJ 152

MenuItem Class Instantiation

 oMenuItem := MenuItem (cCapt, expData, [nShort], [cMessage], [nID]) [1]

oMenuItem := MenuItem (cCapt, cnItemName) [2]

oMenuItem := MenuItem {cCapt, expData, [nShort], [cMessage], [nID]} [3]

oMenuItem := [_g|_t|_b]MenuItem {cCapt, expData, [nShort],[cMsg],[nID]} [4]

Any of the above syntax instantiate new MenuItem object. Syntax [1] is compatible to

Clipper, syntax [2] is supported for compatibility purposes to FoxPro, syntax [3] is

available in VO and FS5, syntax [4] in FS5 only. Arguments:

<cCapt> is a character string that contains either a text string (caption) that concisely

describes the menu option or a menu separator specifier. Modifiable via

oMenuItem:Caption property.

<expData> is a value that contains either a code block or a PopUpMenu object. This

argument is ignored when <cCapt> contains a menu separator specifier.

Modifiable via oMenuItem:Data property.

<nShort> is an optional numeric inkey value that indicates the shortcut key

combination that selects and launches the menu selection. The default is 0.

Modifiable via oMenuItem:Shortcut Constant values for various key

combinations are defined in inkey.fh.

<cMessage> is an optional character string that indicates the text to display on the

status bar when the menu item is selected. The default is an empty string.

Modifiable via oMenuItem:Message

<nID> is an optional numeric value that uniquely identifies the menu item. The default

is 0. Modifiable via oMenuItem:Id

<cnItemName> is a string specifying the menu name.

<oMenuItem> is the returned MenuItem object when all of the required arguments

are present, or NIL on failure.

In FlagShip, the main menu (TopBar class) for GUI mode is created automatically at

start-up of the application, called from initio.prg. The source is available in

<FlagShip_dir>/system/initio.prg and initiomenu.prg. You may modify the default

menu any time later, see example in <FlagShip_dir>/examples/menu.prg

If there is not special font specified via oMenuItem:Font or oTopBar:Font, the default

window manager font is used.

Example: see <FlagShip_dir>/system/initiomenu.prg and <FlagShip_dir>/examples/

topmenu.prg

Compatibility: Available also in CL53 and VO. See also: PopUp and TopBar classes

 OBJ 153

MenuItem Class Properties

oMenuItem:Accelerator([inkeyVal], [accText], [iMode]) ─> iKey|cText

An accelerator is a keystroke sequence that is associated with a particular menu

command. The accelerator is used to execute the menu command without requiring

the application user to first display the menu and then choose the command. For

example, if the File -> New command had an accelerator of Ctrl+N, you could simply

press this key combination to open a new document, rather than having to choose

the File menu and then the New command. Each window can be given its own

accelerator. An accelerator generates events as though its associated menu

command was actually selected. Note that an accelerators menu command does not

even have to be visible on any menu - thus an accelerator can be seen as a direct

keystroke sequence for generating a command event.

<inkeyVal> assign new inkey() value as accelerator key, 0 = disable, NIL = return

current value

<accText> assign new accelerator text, "" = disable, NIL = return current value

<iMode> requested return mode mode : 1 = return current inkeyVal (default), 2=

return current accText

oMenuItem:Caption ─> cCapt ACCESS

oMenuItem:Caption := cCapt ASSIGN

Contains either a text string that concisely describes the menu option or a menu

separator specifier. oMenuItem:caption is the text that appears in the actual menu.

A menu separator is a horizontal line in a pop-up menu that separates menu items

into logical groups. Use the constant MENU_SEPARATOR in button.fh to assign the

menu separator specifier to oMenuItem:caption.

When present, the & character specifies that the character immediately following it in

the caption is the menu item's accelerator key. The accelerator key provides a quick

and convenient mechanism for the user to select a menu item when the menu that it

is contained within has input focus. When the menu is a member of a TopBar object,

the user selects the menu item by pressing the Alt key in combination with the

accelerator key. When the menu is a member of a PopUp object, the user selects the

menu item by simply pressing the accelerator key. The accelerator key is not case

sensitive.

oMenuItem:Cargo <─> anyValue EXPORT

User definable value of any content. Not used by the MenuItem class self. The default

is NIL.

OBJ 154

oMenuItem:Checked ─> lCheck ACCESS

oMenuItem:Checked := lCheck ASSIGN

Contains a logical value that indicates whether a check mark appears to the left of

the menu item's caption. A value of true (.T.) indicates that a check mark should

show; otherwise, a value of false (.F.) indicates that it should not.

oMenuItem:ClassName() ─> "MENUITEM"

provided for Clipper compatibility purposes. Return fix "MENUITEM".

oMenuItem:Column([nCol], [lPixel]) ─> nCol

Set/get column of the associated PopUp class.

<nCol> is a numeric value either in coordinates or in pixel. If NIL, only the current

setting is returned.

<lPixel> If specified TRUE, the <nCol> input/output column coordinate is assumed

in pixel. If FALSE, <nCol> is in row/col coordinates. If this parameter is not

specified (i.e. NIL), the kind of passed and returned coordinates is determined

from the current SET PIXEL setting.

oMenuItem:Data ─> obData ACCESS

oMenuItem:Data := obData ASSIGN

<obData> contains either a code block or a PopUp object or NIL. When the menu

item is selected, its code block, if present, is evaluated passing two parameters

to the code block: the current MenuItem object, and menu-ID. If the codeblock

returns .F., the TopBar or PopUp selection remains active, otherwise the current

selection is terminated. If <obData> is PopUp object, the PopUp menu is opened

on selection.

oMenuItem:Enabled ─> lStatus ACCESS

oMenuItem:Enabled := lStatus ASSIGN

<lStatus> is a logical value that indicates whether the menu item can be selected or

not. If true (.T.), it permit user access; if false (.F.) the user access is denied.

When disabled, the item will be shown in its disabled color.

oMenuItem:Font ─> oFont ACCESS

oMenuItem:Font := oFont ASSIGN

<oFont> is a Font object or NIL. Applicable for GUI mode only. If not specified, either

the oTopBar:Font or the default window manager font is used. If specified, this

item font has preference over the default oTopBar:Font

 OBJ 155

oMenuItem:Id ─> nIdNum ACCESS

oMenuItem:Id := nIdNum ASSIGN

<nIdNum> is an optional numeric value that uniquely identifies the menu item. The

default is 0 which sets an internal ID number automatically.

oMenuItem:IsCodeblock() ─> lStatus

Returns true (.T.) when the MenuItem object contain code block, and false otherwise.

This property is provided for your convenience and is equivalent to

valtype(oMenuItem:Data) == "B"

oMenuItem:IsPopUp() ─> lStatus

Returns true (.T.) when the MenuItem object contain PopUp object, and false

otherwise. This property is provided for your convenience and is equivalent to

valtype(oMenuItem:Data) == "O"

oMenuItem:IsSeparator() ─> lStatus

Returns true (.T.) when the MenuItem object contain separator, and false otherwise.

This property is provided for your convenience and is equivalent to oMenuItem:Data

== NIL .or. oMenuItem:Data == MENU_CAPTION_SEPARATOR

oMenuItem:Message ─> cbMsg ACCESS

oMenuItem:Message := cbNsg ASSIGN

<cMsg> is an optional string or code block evaluated to string that describes the

menu item. The text appears on the screens status bar line if such (always in

GUI mode), or in the SET MESSAGE TO line otherwise.

oMenuItem:Row([nRow], [lPixel]) ─> nRow

Set/get row of the associated PopUp class.

<nRow> is a numeric value either in coordinates or in pixel. If NIL, only the current

setting is returned.

<lPixel> If specified TRUE, the <nRow> input/output column coordinate is assumed

in pixel. If FALSE, <nCol> is in row/col coordinates. If this parameter is not

specified (i.e. NIL), the kind of passed and returned coordinates is determined

from the current SET PIXEL setting.

oMenuItem:Select() ─> self

Select the MenuItem, display it including all backward hierarchy

OBJ 156

oMenuItem:Shortcut ─> nInkeyVal ACCESS

oMenuItem:Shortcut := nInkeyVal ASSIGN

"Shortcut" is a Clipper terminology for an accelerator. It is fully equivalent to
ACCESS: nInkeyVal := oMenuItem:Accelerator(NIL, NIL, 1)
ASSIGN : oMenuItem:Accelerator(nInkeyVal, NIL, 1)

oMenuItem:ShortKey ─> nInkeyVal ACCESS

oMenuItem:ShortKey := nInkeyVal ASSIGN

The ShortKey is defined using the & character in oMenuItem:Caption, set during the

object instantiation or at oMenuItem:caption assign. As opposite to accelerator, the

popup menu needs to be open for the ShortKey to be active.

<nInkeyVal> is the Inkey() equivalence of this character

oMenuItem:ShortPos ─> nPos ACCESS

Returns an index of Shortkey in Caption, If no & character in the oMenuItem:Caption

was specified, 0 is returned.

oMenuItem:Style ─> cStyle ACCESS

oMenuItem:Style := cStyle ASSIGN

<cStyle> is a character string that indicates the delimiter characters that are used by

the PopUp:Display() method. The string must contain two characters. The first is

the character associated with the oMenuItem:checked property, its default value

is the square root character. The second is the sub-menu indicator, its default is

the right arrow character.

This property is considered in Terminal i/o mode only and ignored otherwise.

 OBJ 157

PopUp Class

Place and display items in pop-up menu.

In FlagShip, the main menu (TopBar class) with sub-menus (PopUp class) is created

automatically for GUI mode at start-up of the application, called from initio.prg. The source of

the main menu is available in <FlagShip_dir>/system/initiomenu.prg. You may modify the

default menu any time later, see example in <FlagShip_dir>/examples/menu.prg

As with other GUI classes in FlagShip, the general PopUp class is internally inherited by three

different sub-classes: _gPopUp for GUI based application, _tPopUp for terminal/text based

mode, and _bPopUp for basic i/o mode, all defined in the menuclass.fh header file. The proper

class, corresponding to the used i/o mode, is set either at compile time with the compiler switch

"-io=g|t|b", or latest at run-time depending on the currently used environment.

Note: in GUI mode, the PopUp is handled only in the full menu bar context, i.e. as a sub-class

(child) of TopBar or of other PopUp class. In basic i/o mode, only a rough PopUp functionality

is simulated by the sequential in/ output.

PopUp Class Index

Class PopUp

Inherits from: - (none)

Inherited by: - (none)

Class prototype: menuclass.fh

Defines: button.fh, box.fh

AddItem() METHOD appending new item

Border ACC/ASS ignored in GUI

Bottom ACC/ASS bottommost screen row (pixel/row)

ClassName() METHOD "POPUPMENU" for Clipper compatibility

Close() METHOD deactivate pop-up menu

ColorSpec ACC/ASS term only, ignored in GUI

Current ACC/ASS selected item#

DelItem() METHOD remove an item

Display() METHOD show pop-up menu

GetAccel() METHOD item# corresp.to given accel

GetFirst() METHOD first selectable item

GetItem() METHOD returns the MenuItem object

GetLast() METHOD last selectable item

GetNext() METHOD next selectable item

GetPrev() METHOD previous selectable item

GetShortct() METHOD shortcut keystroke

HitTest() METHOD relationship of mouse and popup

OBJ 158

InputBlock ACC/ASS user-supplied input

InsItem() METHOD insert new item at spec.position

IsOpen() METHOD popup open?

ItemCount ACCESS total number of items

ItemPos() METHOD find menu item

Left ACC/ASS leftmost screen column or NIL

MenuStruct() METHOD menu structure

Open() METHOD open popup

ResetAllItems() METHOD reset all MenuItem objects

Right ACC/ASS rightmost screen column or NIL

Top ACC/ASS topmost screen row or NIL

Select() METHOD select specif.item

SetItem() METHOD replace MenuItem object

SetAllItems() METHOD set tempor block to all MenuItem objects

SubmenuMark ACC/ASS mark for submenus (" ...")

Width ACCESS width required... (pixel/row)

 OBJ 159

PopUp Class Instantiation

 oPopUp := PopUp ([nTop], [nLeft], [nBottom], [nRight], [lInPixel]) [1]

oPopUp := PopUp {[nTop], [nLeft], [nBottom], [nRight], [lInPixel]} [2]

oPopUp := [_g|_t|_b]PopUp {[nTop],[nLeft],[nBott],[nRight],[lInPix]} [3]

Any of the above syntax instantiate new PopUp object. Syntax [1] is compatible to

Clipper, syntax [2] is available in VO and FS5, syntax [3] in FS5 only.

Note: in GUI mode, the PopUp is handled only in the full menu bar context, i.e. as a

sub-class (child) of TopBar or of another PopUp class.

Arguments (all optional):

<nTop> is a numeric value that indicates the top screen row of the pop-up menu. If

omitted, oPopUp:top is set to an appropriate value relative to <nBottom> that

allows as many items as possible to show.

When the pop-up menu is a child of another menu, its top variable will be

automatically set by the parent menu regardless of whether <nTop> is omitted.

<nLeft> is a numeric value that indicates the left screen column of the pop-up menu.

If omitted, oPopUp:left is set to an appropriate value relative to <nRight> that

allows as many menu columns as possible to show.

When the pop-up menu is a child of another menu, its left variable will be

automatically set by the parent menu regardless of whether <nLeft> is omitted.

<nBottom> is a numeric value that indicates the bottom screen row of the pop-up

menu. If omitted, oPopUp:bottom is set to an appropriate value relative to

<nTop> that allows as many items as possible to show. If <nTop> is also omitted,

oPopUp:bottom is set to center the menu vertically on the screen. The default

value is determined the first time the pop-up menu is displayed.

When the pop-up menu is a child of another menu, its bottom variable will be

automatically set by the parent menu regardless of whether <nBottom> is

omitted.

<nRight> is a numeric value that indicates the right screen column of the pop-up

menu. If omitted, oPopUp:right is set to an appropriate value relative to <nLeft>

that allows as many menu columns as possible to show. If <nLeft> is also

omitted, oPopUp:right is set to center the menu horizontally on the screen. The

default value is determined the first time the pop-up menu is displayed.

When the pop-up menu is a child of another menu, its right variable will be

automatically set by the parent menu regardless of whether <nRight> is omitted.

<lPixel> If specified TRUE, the input coordinates are assumed in pixel. If FALSE, the

input are row/col coordinates. If this parameter is not specified (i.e. NIL), the kind

of passed coordinates is determined from the current SET PIXEL setting.

OBJ 160

<oPopUp> is a PopUp object when all of the required arguments are present, or NIL

otherwise.

Example: see <FlagShip_dir>/system/initiomenu.prg and <FlagShip_dir>/examples/

topmenu.prg

Compatibility: Available also in CL53.

See also: TopBar and MenuItem classes

 OBJ 161

PopUp Class Properties

oPopUp:AddItem(oMenuItem) ─> self

Add a new item in the PopUp object. Arguments:

<oMenuItem> is a MenuItem object which is appended at the end of the PopUp items

list.

See also: oPopUp:InsItem()

oPopUp:Border ─> cBorder ACCESS

oPopUp:Border := cBorder ASSIGN

<cBorder> is an optional string that is used when drawing a border around the pop-

up menu. Its default value is predefined in the global array element

_aGlobSetting[GSET_T_C_MENUBORDER], see initio.prg. It is usually B_SINGLE

+ SEPARATOR_SINGLE.

The string must contain either zero or exactly eleven characters. The first eight

characters represent the border of the pop-up menu and the final three characters

represent the left, middle, and right characters for the menu item separators. The

eight characters which represent the pop-up menu border begin at the upper-left

corner and rotate clockwise as follows: upper-left corner, top, upper-right corner,

right, bottom, bottom-left corner, and left. This property apply for Terminal i/o mode

only and is ignored in GUI.

oPopUp:Bottom ─> nRow ACCESS

oPopUp:Bottom := nRow ASSIGN

<nRow> is a numeric value that indicates the bottommost screen row where the pop-

up menu is displayed. If not specified when the PopUp object is instantiated,

oPopUp:bottom contains NIL until the first time it is displayed. This property

applies for Terminal i/o mode only and is ignored in GUI.

oPopUp:Cargo <─> anyValue EXPORT

User definable value of any content. Not used by the PopUp class self. The default

is NIL.

oPopUp:ClassName() ─> "POPUPMENU"

provided for Clipper compatibility purposes. Return fix "POPUPMENU".

OBJ 162

oPopUp:Close([lChild]) ─> self

<lChild> is a logical value that indicates whether oPopUp:close() should deactivate

the pop-up menu in its selected item, which in turn deactivates the pop-up menu

in its selected item and so on. This is useful for nested menus where multiple

levels of choices are presented. A value of true (.T.) indicates that child pop-up

menu items should be closed. A value of false (.F.) indicates that child pop-up

menu items should not be closed. The default value is true.

oPopUp:Close() is used for deactivating of pop-up menu. When called, it performs

three operations. First, if the value of <lChild> is not false, close() determines if its

selected menu item contains a PopUp object. If so, it calls its selected menu item's

close() method. Second, close() restores the previous contents of the region of the

screen that it occupies. Third, close() sets its selected item to 0. When the pop-up

menu is not open, no action is taken.

oPopUp:ColorSpec ─> cColor ACCESS

oPopUp:ColorSpec := cColor ASSIGN

<cColor> is a character string that indicates the color attributes that are used by the

pop-up menu's display() method. The string can contain up to seven color pairs:

Position Applies To Default value from

in colorSpec system color setting

1 Not selected popup menu items Standard

2 Selected popup menu item Enhanced

3 Accelerator key for unselected items Background

4 Accelerator key for the selected items Enhanced

5 Disabled popup menu items Unselected

6 Popup menu's border Border

7 Statusbar message Standard

This property applies for Terminal i/o mode and is ignored otherwise.

oPopUp:Current ─> nPos ACCESS

oPopUp:Current := nPos ASSIGN

<nPos> is a numeric value that indicates which item is selected.

oPopUp:DelItem(nPos) ─> self

Remove an item from a pop-up menu. Argument:

<nPos> is a numeric value that indicates the position in the pop-up menu of the item

to be deleted.

 OBJ 163

oPopUp:Display() ─> self

Shows a pop-up menu including its items on the screen. It checks all previously

specified oPopUp object properties, calculates missing values if required, and

displays the widget on the screen. Display() is also called automatically when the

parent menu item in TopBar or PopUp is selected.

oPopUp:GetAccel(nInkeyVal) ─> nInkeyVal

<nInkeyVal> is a numeric value that indicates the inkey() value to be checked.

Returns a numeric value that indicates the position in the pop-up menu of the

first item whose accelerator key matches that which is specified by <nInkeyVal>.

The accelerator key is defined using the & character in oMenuItem:Caption.

oPopUp:GetFirst() ─> nPos

Determine the position of the first selectable item in a pop-up menu. Selectable

means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the pop-up menu of the

first selectable item. Returns 0 if the pop-up menu does not contain a selectable

item.

oPopUp:GetFirst() does not change the currently selected menu item. In order to

change the currently selected pop-up menu item, you must call the oPopUp:Select()

method.

oPopUp:GetItem(nPos) ─> oMenuItem

Return the specified item in a pop-up menu, regardless if the item is selectable or

not.

<nPos> is a numeric value that indicates the position in the pop-up menu of the item

that is being retrieved.

<oMenuItem> is a MenuItem object at the position in the pop-up menu specified by

<nPos> or NIL when <nPos> is invalid.

oPopUp:GetItem() does not change the currently selected menu item. In order to

change the currently selected pop-up menu item, you must call the oPopUp:Select()

method.

OBJ 164

oPopUp:GetLast() ─> nPos

Determine the position of the last selectable item in a pop-up menu. Selectable

means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the pop-up menu of the

last selectable item. Returns 0 if the pop-up menu does not contain a selectable

item.

oPopUp:GetLast() does not change the currently selected menu item. In order to

change the currently selected pop-up menu item, you must call the oPopUp:Select()

method.

oPopUp:GetNext() ─> nPos

Determine the position of the next selectable item in a pop-up menu. Selectable

means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the pop-up menu of the

next selectable item. Returns 0 if the pop-up menu does not contain next

selectable item.

oPopUp:GetNext() does not change the currently selected menu item. In order to

change the currently selected pop-up menu item, you must call the oPopUp:Select()

method.

oPopUp:GetPrev() ─> nPos

Determine the position of the previous selectable item in a pop-up menu. Selectable

means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the pop-up menu of the

previous selectable item. Returns 0 if the pop-up menu does not contain previous

selectable item.

oPopUp:GetPrev() does not change the currently selected menu item. In order to

change the currently selected pop-up menu item, you must call the oPopUp:Select()

method.

oPopUp:GetShortct(nInkeyVal) ─> nPos

<nInkeyVal> is a numeric value that indicates the inkey() value to be checked.

<nPos> is a numeric value that indicates the position in the pop-up menu of the first

item whose shortcut key matches that which is specified by <nInkeyVal>. The

shortcut key is defined using the oMenuItem:shortcut property.

oPopUp:HitTest(p1, p2) ─> nStatus

Provided for backward compatibility purposes to Clipper only. <nStatus> is always 0.

 OBJ 165

oPopUp:InputBlock ─> oBlock ACCESS

oPopUp:InputBlock := oBlock ASSIGN

<oBlock> is user-supplied code block, i.e. keyboard handler which should be used

instead of the build-in one. If <oBlock> is NIL, the default handler will be (re)used.

The code block is called in oPopUp:Display() and receive two arguments: the

oPopUp object, and the pressed key as an Inkey() value. The code block should

then perform the required action and return either

0 exit the PopUp processing

< 0 enter the current item

> 0 select the PopUp item specified by the return value

See also <FlagShip_dir>/examples/menu2.prg

Apply for Terminal i/o mode, ignored otherwise.

Source: example of the handler is available in <FlagShip_dir>/system/

topbarhandler.prg

oPopUp:InsItem(nPos, oMenuItem) ─> self

Add a new item in the PopUp object at specified position. Arguments:

<nPos> is a numeric value specifying the position where the menu item should be

inserted. A value greater than oPopUp:ItemCount perform the same action as

oPopUp:AddItem()

<oMenuItem> is a MenuItem object which is inserted at the specified position in the

PopUp items list.

See also: oPopUp:AddItem()

oPopUp:IsOpen() ─> lStatus

<lStatus> is true (.T.) when the PopUp is open, or false otherwise

oPopUp:ItemCount ─> nCount ACCESS

<nCount> is the total number of items in PopUp

oPopUp:ItemPos(oMenuItem) ─> nPos

<oMenuItem> is a MenuItem object which should be searched in the PopUp item list

<nPos> is the found position of specified MenuItem object in the PopUp item list or

0 if not found.

OBJ 166

oPopUp:Left ─> nCol ACCESS

oPopUp:Left := nCol ASSIGN

<nCol> is the leftmost screen column. Apply for Terminal i/o, ignored otherwise.

oPopUp:MenuStruct([nDepth], [aStruct]) ─> aStruct

Creates a multi-dimensional array containing the current menu structure. Arguments

(all optional):

<nDepth> is the required depth. If not specified, all childs are determined.

<aStruct> if the array was passed as argument, the returned structure is appended,

otherwise a new array is created. Any element contain a sub-array with {nDepth,

nRelPos, oMenuItem, oMenuItem:Caption}

Example:

 aStruct := oMyPopup:MenuStruct()
 aeval(aStruct, {|x| qout(space(x[1] *2), ltrim(x[2]), x[4])})

oPopUp:Open() ─> self

equivalent to oPopUp:Display()

oPopUp:ResetAllItems() ─> NIL

Replace all PopUp items MenuItem's data with the by oPopUp:SetData() stored

values.

oPopUp:Right ─> nCol ACCESS

oPopUp:Right := nCol ASSIGN

<nCol> is the rightmost screen column. If not specified when the PopUp object is

instantiated, oPopUp:Right contains NIL until the first time it is displayed. Apply

for Terminal i/o, ignored otherwise.

oPopUp:Top ─> nRow ACCESS

oPopUp:Top := nRow ASSIGN

<nRow> is a numeric value that indicates the topmost screen row where the pop-up

menu is displayed. If not specified when the PopUp object is instantiated,

oPopUp:bottom contains NIL until the first time it is displayed. This property

applies for Terminal i/o mode only and is ignored in GUI.

 OBJ 167

oPopUp:Select(nPos) ─> self

Set/select the specified item number. The method is typically called when one of the

arrow keys is pressed.

<nPos> is a numeric value that indicates the position in the pop-up menu of the item

to be selected.

Apply for Terminal i/o mode, ignored in GUI mode, where the action is performed

automatically.

oPopUp:SetItem(nPos, oMenuItem) ─> self

Replace specified MenuItem object in the PopUp list. Arguments:

<nPos> is the item position in range 1..oPopUp:ItemCount

<oMenuItem> is MenuItem object replacing the current pop up item.

oPopUp:SetAllItems(bBlock) ─> NIL

Replace all PopUp items by the same code block <bBlock>, i.e. perform the same

action on all menu items. The replacement has no affect on menu items that are

separators or PopUp objects. You may restore the previous status any time later by

oPopUp:ResetAllItems()

oPopUp:SubmenuMark ─> cMark ACCESS

oPopUp:SubmenuMark := cMark ASSIGN

<cMark> is a character or string which should be displayed as a submenu indicator

instead of the 2nd character of oMenuItem:Style.

This property is considered in Terminal i/o mode only and ignored otherwise.

oPopUp:Width ─> nWidth ACCESS

<nWidth> is the current width of the pop up window including the frame box.

Available after the oPopUp:Display() was invoked. Apply for Terminal i/o mode

only, ignored otherwise.

OBJ 168

TopBar Class

Place and display items in TopBar menu. The TopBar is the main menu bar object in GUI

mode.

In FlagShip, the main menu (TopBar class) with sub-menus (PopUp class) is created

automatically for GUI mode at start-up of the application, called from initio.prg. A TopBar object

is assigned there to constant variable "oTopBar". The source of the main menu is available in

<FlagShip_dir>/system/initiomenu.prg. You may modify (or disable) the default menu any time

later, see example in <FlagShip_dir>/examples/topmenu.prg

As with other GUI classes in FlagShip, the general TopBar class is internally inherited by three

different sub-classes: _gTopBar for GUI based application, _tTopBar for terminal/text based

mode, and _bTopBar for basic i/o mode, all defined in the menuclass.fh header file. The proper

class, corresponding to the used i/o mode, is set either at compile time with the compiler switch

"-io=g|t|b", or latest at run-time depending on the currently used environment.

Note: in GUI mode, the TopBar is handled only in the full menu bar context, which handles

automatically also all PopUp child objects, see example in <FlagShip_dir>/examples/

topmenu.prg. In basic i/o mode, only a rough functionality is simulated by the sequential

in/output.

As opposite to common procedural sequence, the GUI TopBar and it sub-items are event

oriented, i.e. click on the main menu (or access it by Alt-? key) pop-up the corresponding item

and executes the code block (and the stored procedure) independent on where your

procedural application sequence is. TopBar menu is commonly used to execute small task

and then continues in the interrupted application part. To drive the whole application via the

main (TopBar) menu is possible, but slightly complicated compared to sequential/procedural

@..PROMPT / MENU TO.

 OBJ 169

TopBar Class Index

Class TopBar

Inherits from: - (none)

Inherited by: - (none)

Class prototype: menuclass.fh

Defines: button.fh, box.fh

AddItem() METHOD append new item

ClassName() METHOD "TOPBARMENU" for Clipper compatibility

Clear() METHOD clear/delete all menu items

ColorSpec ACC/ASS color specification

Current ACC/ASS set/return selected item#

Delimiters ACC/ASS set/return delimiters

DelItem() METHOD remove specific item#

Display() METHOD show top bar menu & items

Exec() METHOD exec/process top bar menu & items

FindMenuProperty() METHOD find item by property

FindSelectedItem() METHOD find last selected item

Font ACC/ASS the font of whole menu structure

GetAccel() METHOD item# corresp.to given accel

GetFirst() METHOD first selectable item#

GetItem(p1) METHOD return oMenuItem at position#

GetLast() METHOD last selectable item#

GetNext() METHOD next selectable item#

GetPrev() METHOD previous selectable item#

HasFocus ACCESS Exec() in process ?

HitTest() METHOD relationship of mouse in TopBar

InputBlock ACC/ASS user-supplied input handler

InsItem() METHOD insert new item at position#

ItemCount ACCESS number of items in TopBar

ItemPos() METHOD find menu item

Left ACC/ASS leftmost column position

MenuStruct() METHOD menu structure

Right ACC/ASS rightmost column position

Row ACC/ASS row position

Select() METHOD change the selected item#

Separator ACC/ASS menu separator

SetItem() METHOD replace specific item

OBJ 170

TopBar Class Instantiation

oTopBar := TopBar ([nRow], [nLeft], [nRight], [lInPixel]) [1]

oTopBar := TopBar {[nRow], [nLeft], [nRight], [lInPixel]} [2]

oTopBar := [_g|_t|_b]TopBar {[nRow],[nLeft],[nRight],[lInPix]} [3]

Any of the above syntax instantiate new TopBar object. Syntax [1] is compatible to

Clipper, syntax [2] is available in VO and FS5, syntax [3] in FS5 only.

Note: in GUI mode, the TopBar is handled only in the full menu bar context, i.e. it

process automatically also it sub-classes (childs) of the MenuItem and PopUp class.

All the coordinates are ignored in GUI mode, since there is a fix position of the menu

bar within the application menu. Arguments (all optional, considered in terminal i/o

mode only):

<nRow> is a numeric value that indicates the screen row of the top bar menu. If

omitted, 0 is the default. This value is modifiable by the oTopBar:Row property.

<nLeft> is a numeric value that indicates the left screen column of the top bar menu.

The default is 0. Modifiable via the oTopBar:Left property.

<nRight> is a numeric value that indicates the right screen column of the top bar

menu. Modifiable via the oTopBar:Right property.

<lPixel> If specified TRUE, the input coordinates are assumed in pixel. If FALSE, the

input are row/col coordinates. If this parameter is not specified (i.e. NIL), the kind

of passed coordinates is determined from the current SET PIXEL setting.

<oTopBar> is the instantiated TopBar object.

In FlagShip, the main menu bar (TopBar class) with sub-menus (PopUp class) is

created automatically for GUI mode at start-up of the application, called from initio.prg

and assigned to oTopBar global/public variable, see also <FlagShip_dir>/system/

initiomenu.prg and <FlagShip_dir>/system/initio.prg.

So instead of creating new TopBar object, you should use this m->oTopBar variable.

The source of the main menu is available in <FlagShip_dir>/system/initiomenu.prg.

You may modify or redefine the default menu any time later, see example in

<FlagShip_dir>/examples/ topmenu.prg

Compatibility: Available also in CL53.

See also: PopUp and MenuItem classes, <FlagShip_dir>/system/initiomenu.prg

 OBJ 171

TopBar Class Properties

 oTopBar:AddItem() ─> self

Add a new item in the TopBar object. Arguments:

<oMenuItem> is a MenuItem object which is appended at the end of the TopBar

items list.

See also: oTopBar:InsItem() and example <FlagShip_dir>/examples/topmenu.prg

oTopBar:Cargo <─> anyValue EXPORT

User definable value of any content. Not used by the TopBar class self. The default

is NIL.

oTopBar:ClassName() ─> "TOPBARMENU"

provided for Clipper compatibility purposes. Return fix "TOPBARMENU".

oTopBar:Clear() ─> self

Clears (deletes) all previously assigned TopBar items, without deleting the oTopBar

object (constant) self. New TopBar items can be assigned thereafter, see also

example <FlagShip_dir>/examples/topmenu.prg

oTopBar:ColorSpec ─> cColor ACCESS

oTopBar:ColorSpec := cColor ASSIGN

<cColor> is a character string that indicates the color attributes that are used by the

top bar menu's display() method. The string can contain up to seven color pairs:

Position Applies To Default value from

in colorSpec system color setting

1 Not selected bar menu items Standard

2 Selected top bar menu item Enhanced

3 Accelerator key for unselected items Background

4 Accelerator key for the selected items Enhanced

5 Disabled top bar menu items Unselected

6 Top bar menu's border Border

7 The message Standard

This property applies for Terminal i/o mode and is ignored otherwise.

After oTopBar:Clear() 1

OBJ 172

oTopBar:Current ─> nPos ACCESS

oTopBar:Current := nPos ASSIGN

<nPos> is a numeric value that indicates which item is selected.

 oTopBar:Delimiters ─> cDelim ACCESS

oTopBar:Delimiters := cDelim ASSIGN

<cDelim> is a string containing 0 or two characters specifying the left and right

delimiter of the menu item, e.g. "[]". The default is an empty string "" specifying

that no delimiters are used. Apply for Terminal i/o mode only, ignored otherwise.

oTopBar:DelItem(nPos) ─> self

Remove an item from a top bar menu. Argument:

<nPos> is a numeric value that indicates the position in the top bar menu of the item

to be deleted.

See also: oTopBar:Clear(), oTopBar:Append(), oTopBar:Insert()

oTopBar:Display() ─> self

Shows a top bar menu on the screen. Display() checks all previously specified

oPopUp object properties, calculates missing values if required, and displays the

menu bar on the screen. To process menu bar entries automatically, use

oTopBar:Exec()

oTopBar:Exec() ─> nSelected

Process the top bar selection (and all childs) by using the build-in or user defined

keyboard handler (specified by InputBlock).

<nSelected> is the selected menu ID number.

oTopBar:FindMenuProperty(bCompare) ─> oMenuItem

Searches the whole menu structure (including all childs) for the requested menu item

property.

<bCompare> is a code block specifying the search criteria. It receives one

parameter, the oMenuItem object, and should return true (.T.) on match, or .F.

otherwise.

<oMenuItem> is the found menu item object when the code block report .T., or NIL

when the requested property was not found.

 OBJ 173

Example:

 oMenuItem := m->oTopBar:FindMenuProperty({|obj| obj:Id == 123 })
 oMenuItem := m->oTopBar:FindMenuProperty(;
 {|obj| upper(left(obj:Caption)) == "PRINT" })
 if valtype(oMenuItem) == "O"
 ? "MenuItem found ..."
 endif

oTopBar:FindSelectedItem() ─> oMenuItem

Searches the whole menu structure (including all childs) for the requested menu item

property.

<oMenuItem> is the menu item currently selected, or NIL if none.

oTopBar:Font ─> oFont ACCESS

oTopBar:Font := oFont ASSIGN

<oFont> is the used font object for the whole menu bar sequence (i.e. top bar

including all childs). If not specified or is NIL, the default window manager font is

used, except a menu item has own font assigned by oMenuItem:Font. Apply for

GUI mode only, ignored otherwise.

Example:

 m->oTopBar:Font := Font{"Courier",10}
 m->oTopBar:Display() // refresh topbar menu & submenus

 if valtype(m->oTopBar:Font) == "O"
 ? "used TopBar font =", m->oTopBar:Font:FontFamily
 else
 ? "default TopBar font =", m->oApplic:FontWindow:FontFamily
 endif

oTopBar:GetAccel(nInkeyVal) ─> nInkeyVal

<nInkeyVal> is a numeric value that indicates the inkey() value to be checked.

Returns a numeric value that indicates the position in the top bar menu of the

first item whose accelerator key matches that which is specified by <nInkeyVal>.

The accelerator key is defined using the & character in oMenuItem:Caption.

oTopBar:GetFirst() ─> nPos

Determine the position of the first selectable item in a top bar menu. Selectable

means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the top bar menu of the

first selectable item. Returns 0 if the top bar menu does not contain a selectable

item.

OBJ 174

oTopBar:GetFirst() does not change the currently selected menu item. In order to

change the currently selected top bar menu item, you must call the oTopBar:Select()

method.

oTopBar:GetItem(nPos|cPos) ─> oMenuItem

Return the specified item in a top bar menu, regardless if the item is selectable or

not.

<nPos> is a numeric value that indicates the position in the top bar menu of the item

that is being retrieved.

<cPos> is the string specifying the menu name specified by the FoxPro compatible

syntax during the MenuItem(cCapt, cMenuName) invocation.

<oMenuItem> is a MenuItem object at the position in the top bar menu specified by

<nPos> or NIL when <nPos> is invalid.

oTopBar:GetItem() does not change the currently selected menu item. In order to

change the currently selected top bar menu item, you must call the oTopBar:Select()

method.

oTopBar:GetLast() ─> nPos

Determine the position of the last selectable item in a top bar menu. Selectable

means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the top bar menu of the

last selectable item. Returns 0 if the top bar menu does not contain a selectable

item.

oTopBar:GetLast() does not change the currently selected menu item. In order to

change the currently selected top bar menu item, you must call the oTopBar:Select()

method.

oTopBar:GetNext() ─> nPos

Determine the position of the next selectable item in a top bar menu. Selectable

means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the top bar menu of the

next selectable item. Returns 0 if the top bar menu does not contain next

selectable item.

oTopBar:GetNext() does not change the currently selected menu item. In order to

change the currently selected top bar menu item, you must call the oTopBar:Select()

method.

 OBJ 175

oTopBar:GetPrev() ─> nPos

Determine the position of the previous selectable item in a top bar menu. Selectable

means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the top bar menu of the

previous selectable item. Returns 0 if the top bar menu does not contain previous

selectable item.

oTopBar:GetPrev() does not change the currently selected menu item. In order to

change the currently selected top bar menu item, you must call the oTopBar:Select()

method.

oTopBar:HasFocus ─> lStatus ACCESS

<lStatus> is true (.T.) when the top bar has input focus and the Exec() is executed,

or .F. otherwise.

oTopBar:HitTest(p1, p2) ─> nStatus

Provided for backward compatibility purposes to Clipper only.

<nStatus> is always 0.

oTopBar:InputBlock ─> oBlock ACCESS

oTopBar:InputBlock := oBlock ASSIGN

<oBlock> is user-supplied code block, i.e. keyboard handler which should be used

instead of the build-in one. If <oBlock> is NIL, the default handler will be (re)used.

The code block is called in oTopBar:Exec() and receive two arguments: the

oTopBar object, and the pressed key as an Inkey() value. The code block should

then perform the required action and return either

0 : exit the PopUp processing

<0 : enter the current item

>0 : select the PopUp item specified by the return value

See also <FlagShip_dir>/examples/menu2.prg

Apply for Terminal i/o mode, ignored otherwise.

Source: example of the handler is available in <FlagShip_dir>/system/

topbarhandler.prg

oTopBar:InsItem(nPos, oMenuItem) ─> self

Add a new item in the top bar object at specified position. Arguments:

<nPos> is a numeric value specifying the position where the menu item should be

inserted. A value greater than oTopBar:ItemCount perform the same action as

oTopBar:AddItem()

OBJ 176

<oMenuItem> is a MenuItem object which is inserted at the specified position in the

top bar items list.

See also: oTopBar:AddItem()

oTopBar:ItemCount ─> nCount ACCESS

<nCount> is the total number of items in top bar

oTopBar:ItemPos(oMenuItem) ─> nPos

<oMenuItem> is a MenuItem object which should be searched in the top bar item list

<nPos> is the found position of specified MenuItem object in the top bar item list or

0 if not found.

oTopBar:Left ─> nCol ACCESS

oTopBar:Left := nCol ASSIGN

<nCol> is the leftmost screen column. Apply for Terminal i/o, ignored otherwise.

oTopBar:MenuStruct([nDepth], [aStruct]) ─> aStruct

Creates a multi-dimensional array containing the current menu structure. Arguments

(all optional):

<nDepth> is the required depth. If not specified, all childs are determined.

<aStruct> if the array was passed as argument, the returned structure is appended,

otherwise a new array is created. Any element contain a sub-array with {nDepth,

nRelPos, oMenuItem, oMenuItem:Caption}

Example:

 aStruct := oTopBar:MenuStruct()
 aeval(aStruct, {|x| qout(space(x[1] *2), ltrim(x[2]), x[4])})

oTopBar:Right ─> nCol ACCESS

oTopBar:Right := nCol ASSIGN

<nCol> is the rightmost screen column. If not specified when the top bar object is

instantiated, oTopBar:Right contains NIL until the first time it is displayed. Apply

for Terminal i/o, ignored otherwise.

oTopBar:Row ─> nRow ACCESS

oTopBar:Row := nRow ASSIGN

<nRow> is the screen row. If not specified, 0 is the default. Apply for Terminal i/o,

ignored otherwise.

 OBJ 177

oTopBar:Select(nPos) ─> self

Set/select the specified item number. The method is typically called when one of the

arrow keys is pressed.

<nPos> is a numeric value that indicates the position in the top bar menu of the item

to be selected.

Apply for Terminal i/o mode, ignored in GUI mode, where the action is performed

automatically.

oTopBar:Row ─> cSeparator ACCESS

oTopBar:Row := cSeparator ASSIGN

Set/return the TopBar separator character, e.g. "|". The default is empty string "".

Apply for Terminal i/o mode, ignored otherwise.

oTopBar:SetItem(nPos, oMenuItem) ─> self

Replace specified MenuItem object in the top bar list. Arguments:

<nPos> is the item position in range 1..oTopBar:ItemCount

<oMenuItem> is MenuItem object replacing the current top bar item.

OBJ 178

Printer Class

The printer class handles the output to the standard or selected printer driver. In GUI, it

provides also a dialog for printer setup, i.e. to select the required driver.

The Printer setup and Print is available in the default Menu->File. The Print option is disabled

there as long as the printer spooler file is empty. See also LNG.5.1.6 and <FlagShip_dir>/

system/initiomenu.prg for details.

The printer object is instantiated automatically in initio.prg and is stored in global constant

named "oPrinter"

Class Printer

Inherits from: - (none)

Inherited by: - (none)

Class prototype: printerclass.fh

Defines: - (none)

Instantiated to oPrinter and _oPrinter

Printer Class Index
Color ACC/ASS Set/return the printers color property

Display() METHOD Display the printer spooler file

DocName ACC/ASS Return/Set the print document for GUI

Driver ACC/ASS Return/Set the default driver name

DriverHldpi ACCESS Get the horizontal driver resolution in LDPI

DriverHmargin ACCESS Get the horizontal margin of the driver

DriverVldpi ACCESS Get the vertical driver resolution in LDPI

DriverVmargin ACCESS Get the horizontal margin of the driver

Exec() METHOD Invokes the printer-spooler

ExecBlock ACC/ASS User code block replacing Exec() behavior

ExecFormatted() METHOD Reformats file/output and print it

ExecPrintScreen() METHOD Prints the whole user-screen

Font ACC/ASS Optional font object, used by :ExecFormatted()

HeaderLeft ACC/ASS Left part of header for ExecFormatted()

HeaderMid ACC/ASS Center part of header for ExecFormatted()

HeaderRight ACC/ASS Right part of header for ExecFormatted()

InputFileName ACC/ASS Get/set the file name to print

InputUser() ASSIGN File name assigned by SET PRINTER TO <file>

MarginBottom ACC/ASS Set/get the bottom margin

MarginBottom() METHOD Set/get the bottom margin

MarginLeft ACC/ASS Set/get the left margin

MarginLeft() METHOD Set/get the left margin

MarginRight ACC/ASS Set/get the right margin

MarginRight() METHOD Set/get the right margin

MarginTop ACC/ASS Set/get the top margin

 OBJ 179

MarginTop() METHOD Set/get the top margin

NumCopies ACC/ASS Number of copies considered by :Exec*()

Orientation ACC/ASS Portrait or Landscape, for user ExecBlock

OutputFileName ACC/ASS Optional for user ExecBlock

PageAll ACC/ASS Optional for user ExecBlock

PageFrom ACC/ASS Optional for user ExecBlock

PageOrder ACC/ASS First or Last, for user ExecBlock

PageSize ACC/ASS Optional for user ExecBlock

PageTo ACC/ASS Optional for user ExecBlock

Print ACC/ASS Enable/disable printing to GUI driver

PrintExecutable ACC/ASS Set/get the default spooler executable

Setup() METHOD Dialog to select printer properties (GUI only)

SetupAborted ACCESS Was the SetUp() aborted by user?

Show() METHOD Equivalent to Display()

TabStop ACC/ASS Tabulator size for :ExeFormatted()

GUIabort() METHOD GUI only: abort output

GUIcol() METHOD GUI only: get/set current column

GUIcolWidth() METHOD GUI only: get column width

GUIdevOut() METHOD GUI only: print text same as DevOut()

GUIdrawBox() METHOD GUI only: draw box

GUIdrawLine() METHOD GUI only: draw line

GUIexec() METHOD GUI only: print, same as PrintGui()

GUIfixPage() METHOD GUI only: fix page size

GUImaxCol() METHOD GUI only: max columns on page

GUImaxRow() METHOD GUI only: max rows on page

GUInewLine() METHOD GUI only: line feed, same as Qout()

GUInewPage() METHOD GUI only: form feed, same as EJECT

GUIpageNum ACC/ASS GUI only: get/set page number

GUIrowHeight() METHOD GUI only: get row height

GUIrow() METHOD GUI only: get/set current row

GUIsetColor() METHOD GUI only: set default color

GUIsetFont() METHOD GUI only: set default font

GUIsetPos() METHOD GUI only: set new print position

GUIstart() METHOD GUI only: init printout

GUItestPage() METHOD GUI only: print test page

GUItextOut() METHOD GUI only: print text same as Qqout()

The source of the printer class is available in <FlagShip_dir>/ system/o*printer*.prg files. See

also examples in <FlagShip_dir>/examples/printer.prg and printergui.prg

OBJ 180

Printer Class Instantiation

The printer class is instantiated automatically in initio.prg and is stored in global constant

named "oPrinter"

Printer Class Properties

 oPrinter:Color ─> isColor ACCESS

oPrinter:Color := isColor ASSIGN

Set/return the printers color property This is optional property, not used directly

by :Exec() but my be used and considered in user-defined :ExecBlock The default

is .T. or an user-set value from :SetUp()

oPrinter:Display ([nTop],[nLeft],[nBott],[nRight],
[lPixel],[nLineSize],[cUdf]) ─> lOk METHOD

Displays the printer spooler file via MemoEdit(). The <nTop>, <nLeft>, <nBott> and

<nRight> are optional MemoEdit() coordinates. When <lPixel> is .T., these

coordinates are in pixel, .F. in row/cols, and NIL select default SET PIXEL.

<nLineSize> determines the line length, which defaults to <nRight> - <nLeft>. If

<nLineSize> is greater that the default, the window scrolls horizontally. <cUdf> is a

string specifying the name of a user-defined function to control the editing process.

oPrinter:DocName ─> cName ACCESS

oPrinter:DocName := cName ASSIGN

Set/return the document name in GUI mode for PrintGui(). The Assign must be set

before SET GUIPRINT ON or PrintGui(.T.) or oPrinter:Setup() to be considered. If

not set, the default name is ExecName()_YYYYMMDD.HHMMSS

oPrinter:Driver ─> cPrintDriver ACCESS

oPrinter:Driver := cPrintDriver ASSIGN

Return/Set the default driver name (system dependant). The default driver is user-

selected in oPrinter:SetUp() and is e.g. "Printer1" on Unix or driver name in MS-

Windows. The driver name is used in oPrinter:Exec()

oPrinter:DriverHldpi ─> nResol ACCESS

Get the horizontal driver resolution in LDPI (logical dots per inch). It is not the real

printer resolution, but the unit used for margins. For laser printers, the returned value

is usually 72 x 72 dpi = 2.83 x 2.83 dots per mm. If the printer is not set yet, use

default printer.

 OBJ 181

oPrinter:DriverHmargin ─> nPixel ACCESS

Get the horizontal margin of the driver in pixel. If the printer is not set yet, use default

printer

oPrinter:DriverVldpi ─> nResol ACCESS

Get the vertical driver resolution in LDPI (logical dots per inch). It is not the real printer

resolution, but the unit used for margins. For laser printers, the returned value is

usually 72 x 72 dpi = 2.83 x 2.83 dots per mm. If the printer is not set yet, use default

printer.

oPrinter:DriverVmargin ─> nPixel ACCESS

Get the horizontal margin of the driver in pixel. If the printer is not set yet, use default

printer

oPrinter:Exec ([nWait],[ncMode]) ─> lOk METHOD

Invokes the printer-spooler.

<nWait> is optional waiting period in seconds after printing (to display messages),

default = 5sec.

<ncMode> = 0 or NIL: in Linux, invoke lpr or lp or driver set by PrintExecutable. In

Windows, invokes native WinSpool driver (the source is available in

o_printer.prg). In GUI mode, check for Setup() is performed.

<ncMode> = 1: in Linux, use "cp <file> /dev/lp0", in Windows, use "copy <file> PRN:"

<ncMode> = string: used port/device, e.g. "LPT3:" in Windows, or "/dev/lp2" in

Linux/Unix The printed file name is either set by oPrinter:InputFileName or is

determined by FS_SET("print") otherwise.

Before calling oPrinter:Exec(), either

a) execute oPrinter:Setup(), otherwise it will be called automatically in GUI mode

b) or assign oPrinter:Driver := "My Printer Name" (but insecure)

c) or use oPrinter:Exec(,1)

d) or use oPrinter:Exec(,"device name")

otherwise simple copy <printerfile> to standard printer device is used, same as with

oPrinter:Exec(,1). You also may set oPrinter:NumCopies, oPrinter:MarginTop and

oPrinter:MarginLeft beforehand.

Note: The _oprinter:Exec() may also be called from main menu File->Print (see

initiomenu.prg) via STATIC FUNCTION InitIoPrint(obj, menuID)

Example: see LNG.5.1.8.c and <FlagShip_dir>/examples/printer.prg

OBJ 182

oPrinter:ExecBlock ─> bCodeBlock ACCESS

oPrinter:ExecBlock := bCodeBlock or NIL ASSIGN

User code block replacing the Exec() behavior. If the code block is specified,

oPrinter:Exec() invokes this block instead if the standard oPrinter:Exec() method.

oPrinter:ExecFormatted ([cFileName],[oFont]) ─> lOk METHOD

Reads the <cFileName>, reformats output according to <oFont>, invokes the printer-

spooler set by oPrinter:SetUp(). If <cFileName> is not specified, oPrinter:InputFile-

Name or FS_SET("print") is used. The <oFont> is considered in GUI mode only and

is optional font object specifying the printer font. It also may be set by oPrinter:Font.

Before executing ExecFormatted(), you may change it behavior by HeaderLeft,

HeaderMid, HeaderRight, MarginTop, MarginBottom, MarginLeft, MarginRight,

NumCopies, TabStop

In GUI mode, following attributes within the text are supported:

 ... - Bold font style

 <i> ... </i> - Italic font style

 <u> ... </u> - Underlined font style

In Terminal i/o mode, oPrinter:ExecFormatted() behaves same as oPrinter:Exec().

Example: see LNG.5.1.8.c and <FlagShip_dir>/examples/printer.prg

oPrinter:ExecPrintScreen ([lAdapt]) ─> lOk METHOD

Prints the whole user-screen to default spooler according to :SetUp() The

oPrinter:PrintScreen() is also executed from main menu (see initiomenu.prg) either

via STATIC FUNCTION InitIoScrPrint(obj, menuID) or user redefined

oPrinter:Font ─> oFont ACCESS

oPrinter:Font := oFont ASSIGN

Optional font object, used by oPrinter:ExecFormatted()

oPrinter:HeaderLeft ─> cText ACCESS

oPrinter:HeaderLeft := cText ASSIGN

Left part of header for ExecFormatted(). <cText> can be any string including special

macros "<>" for page number, "<date>" for current date, "<time>" for current time,

"<file>" for printer file name. The default setting is "Page <>"

 OBJ 183

oPrinter:HeaderMid ─> cText ACCESS

oPrinter:HeaderMid := cText ASSIGN

The mid part of header for ExecFormatted(). <cText> can be any string including

special macros "<>" for page number, "<date>" for current date, "<time>" for current

time, "<file>" for printer file name. The default setting is "<date> <time>"

oPrinter:HeaderRight ─> cText ACCESS

oPrinter:HeaderRight := cText ASSIGN

Right part of header for ExecFormatted(). <cText> can be any string including special

macros "<>" for page number, "<date>" for current date, "<time>" for current time,

"<file>" for printer file name. The default setting is "<file>"

oPrinter:InputFileName ─> cFileName ACCESS

oPrinter:InputFileName := cFileName ASSIGN

Get/set the file name to print by oPrinter:Exec() or ExecFormatted(). If not specified,

the default printer spooler file name is either the SET PRINTER TO <cFileName>, or

is determined by the FS_SET("print") function.

oPrinter:InputUser(cFileName) METHOD

File name assigned by SET PRINTER TO <cFileName>. This method is for internal

use only.

oPrinter:MarginBottom ─> nValue ACCESS

oPrinter:MarginBottom := nValue ASSIGN

Set/get the bottom margin for ExecFormatted() and ExecPrintScreen() and PrintGui()

in GUI mode. <nValue> is in LDPI (logical dots per inch). Defaults are defined in

printerclass.fh, but best set it to
 MarginLeft & MarginRight = oPrinter:DriverHmargin and
 MarginTop & MarginBottom = oPrinter:DriverVmargin

i.e. corresponding to the currently used printer driver. Example: see <FlagShip_dir>/

examples/printer.prg and printergui.prg

oPrinter:MarginBottom([unit],[newValue]) ─> nValue METHOD

Set/get the bottom margin in GUI mode, same as :MarginBottom ACC/ASS but

accepts conversion from/to units. If <unit> is not given, current SET PIXEL or SET

COORD UNIT is used, default is row/col.

OBJ 184

oPrinter:MarginLeft ─> nValue ACCESS

oPrinter:MarginLeft := nValue ASSIGN

Set/get the left margin for ExecFormatted() and ExecPrintScreen() and ExecGUI()

and PrintGui() in GUI mode. Analog to oPrinter:MarginBottom, see additional

description there. This instance is set also by SET MARGIN TO ... command when

_aGlobSetting[GSET_L_SETPRINTER_MARGIN] is set .T. (default is .F.)

oPrinter:MarginLeft([unit],[newValue]) ─> nValue METHOD

Set/get the bottom margin in GUI mode, same as :MarginLeft ACC/ASS but accepts

conversion from/to units. If <unit> is not given, current SET PIXEL or SET COORD

UNIT is used, default is row/col.

oPrinter:MarginRight ─> nValue ACCESS

oPrinter:MarginRight := nValue ASSIGN

Set/get the right margin for ExecFormatted() and ExecPrintScreen() in GUI mode.

Analog to oPrinter:MarginBottom, see additional description there.

oPrinter:MarginRight([unit],[newValue]) ─> nValue METHOD

Set/get the bottom margin in GUI mode, same as :MarginRight ACC/ASS but accepts

conversion from/to units. If <unit> is not given, current SET PIXEL or SET COORD

UNIT is used, default is row/col.

oPrinter:MarginTop ─> nValue ACCESS

oPrinter:MarginTop := nValue ASSIGN

Set/get the top margin for ExecFormatted() and ExecPrintScreen() and PrintGui() in

GUI mode. Analog to oPrinter:MarginBottom, see additional description there.

oPrinter:MarginTop([unit],[newValue]) ─> nValue METHOD

Set/get the bottom margin in GUI mode, same as :MarginTop ACC/ASS but accepts

conversion from/to units. If <unit> is not given, current SET PIXEL or SET COORD

UNIT is used, default is row/col.

oPrinter:NumCopies ─> nValue ACCESS

oPrinter:NumCopies := nValue ASSIGN

Set/get the number of copies for PrintGui(), Exec() or ExecFormatted(). This value is

considered by :Setup() in GUI mode (invoked implicitly by the first PrintGui(.T.) if not

done yet). You may set the value programatically by assigning required number of

copies - but before invoking oPrinter:Setup() or PrintGui(.T.). The default value is 1.

The user may however change it by [Number of copies] or [Preferences] or [Property]

in the printer dialog.

 OBJ 185

oPrinter:Orientation ─> cValue ACCESS

oPrinter:Orientation := cValue ASSIGN

Set/get printer orientation. <cValue> is either "Portrait" or "Landscape", input of "P"

and "L" is accepted as well. This value is considered by :Setup() in GUI mode,

invoked also implicitly by the first PrintGui(.T.) if required. The user may change it by

[Property] or [Preferences] of the printer dialog. You may change the value

programatically by assign and new invocation of oPrinter: Setup(). The default is

"Portrait" or user-selected value from Setup().

oPrinter:OutputFileName ─> cValue ACCESS

oPrinter:OutputFileName := cValue ASSIGN

Set/get output file name. <cValue> is any string. This value is considered by :Setup()

in GUI mode, invoked also implicitly by the first PrintGui(.T.) if required. The user may

change it by [Property] or [Preferences] of the printer dialog. You may change the

value programatically by assign and new invocation of oPrinter: Setup(). The default

is "" or user-selected value from Setup(). Note: this functionality is currently supported

in Linux only.

oPrinter:PageAll ─> lSet ACCESS

oPrinter:PageAll := .T. ASSIGN

Set/get status for printing of all pages. <lSet> is .T. when PageFrom and/or PageTo

is 0, otherwise .F. ASSIGN accepts .T. only, and will reset both PageFrom and

PageTo to 0. This value is considered by :Setup() in GUI mode, invoked also implicitly

by the first PrintGui(.T.) if required. The user may change it by [Property] or

[Preferences] of the printer dialog. You may change the value programatically by

assign and new invocation of oPrinter:Setup().

oPrinter:PageFrom ─> nPage ACCESS

oPrinter:PageFrom := nPage ASSIGN

Set/get the first printed page. If <nPage> is 0 (set by PageAll), all pages are printed;

otherwise specify the 1st page number (1..n). This value is considered by :Setup() in

GUI mode, invoked also implicitly by the first PrintGui(.T.) if required. The user may

change it by [Property] or [Preferences] of the printer dialog. You may change the

value programatically by assign and new invocation of oPrinter:Setup(). The default

is 0 or user-selected value from Setup().

oPrinter:PageOrder ─> cValue ACCESS

oPrinter:PageOrder := cValue ASSIGN

Set/get printer page order. <cValue> is either "First" or "Last", input of "F" and "L" is

accepted as well. This value is considered by :Setup() in GUI mode, invoked also

OBJ 186

implicitly by the first PrintGui(.T.) if required. The user may change it by [Property] or

[Preferences] of the printer dialog. You may change the value programatically by

assign and new invocation of oPrinter:Setup(). The default is "First" or an user-

selected value from SetUp().

oPrinter:PageSize ─> cValue ACCESS

oPrinter:PageSize := cValue ASSIGN

Set/get used page size. <cValue> is "A4" or an user-selected value from SetUp(),

ASSIGN accept any char value w/o check. This value is considered by :Setup() in

GUI mode, invoked also implicitly by the first PrintGui(.T.) if required. The user may

change it by [Property] or [Preferences] of the printer dialog. You may change the

value programatically by assign and new invocation of oPrinter: Setup(). The default

is "A4" or user-selected value from SetUp().

oPrinter:PageTo ─> nPage ACCESS

oPrinter:PageTo := nPage ASSIGN

Set/get the last printed page. If <nPage> is 0 (set by PageAll), all pages are printed;

otherwise specify the last page number (1..n). This value is considered by :Setup() in

GUI mode, invoked also implicitly by the first PrintGui(.T.) if required. The user may

change it by [Property] or [Preferences] of the printer dialog. You may change the

value programatically by assign and new invocation of oPrinter:Setup(). The default

is 0 or user-selected value from SetUp().

oPrinter:Print ─> lOn ACCESS

oPrinter:Print := lOn ASSIGN

Enable/disable printing to GUI driver. The default is .T. (enabled)

oPrinter:PrintExecutable ─> cName ACCESS

oPrinter:PrintExecutable := cName ASSIGN

Set/get the default spooler executable (system dependant), user- selected in SetUp().

Used in Exec() for Linux. If not set manually, "lpr" or "lp" is returned in Unix/Linux,

otherwise "".

 OBJ 187

oPrinter:Setup() METHOD

Pop-up dialog to select printer properties, considered in GUI mode only for Exec(),

ExecFormatted() and ExecPrintScreen(). If not yet invoked explicitly, it is called by

the Exec*() method or the first PrintGui(.T.) function. The Setup() is also executed

from main menu (see initiomenu.prg) either via STATIC FUNCTION InitIoPrSet(obj,

menuID) or user redefined.

oPrinter: SetupAborted ─> lStatus ACCESS

Reports whether the SetUp() was aborted by user. <lStatus> returns .T. when the

"Cancel" button was pressed in the Setup() pop-up dialog, and .F. otherwise. You

may check this property to abort printing.

oPrinter:Show() METHOD

This method is equivalent to oPrinter:Display()

oPrinter:TabStop ─> aValues ACCESS

oPrinter:TabStop := aValues or NIL ASSIGN

Set/get tabulator position (in LDPI pixels) for GUI ExecFormatted(), considered for \t

= chr(9) character in the text line. <aValues> is one-dimensional array of numeric

values. Every Tab position occupy one numeric element in the array, also unsorted,

e.g.
 oPrinter:TabStop := {10,20,50,120}

in LDPI units, see DriverHldpi. All tab values must be > 0, otherwise no tabs will be

set. Reset by an empty array or NIL assignment.

Example: see <FlagShip_dir>/examples/printer.prg

OBJ 188

oPrinter:GUIabort() ─> lOk METHOD

Abort current printing, clear rendering buffer, SETs GUIPRINT OFF. Returns .T. on

success and .F. on failure with developer's warning, i.e. if oPrinter:GUIstart() or SET

GUIPRINT ON or PrintGui(.T.) was yet not invoked. Applicable in GUI mode only,

ignored otherwise.

oPrinter:GUIcol([unit], [newPos]) ─> nPos METHOD

Get/set current printer column.

<unit> is optional numeric value (see UNIT_* in set.fh). If not given, current SET

COORD UNIT or SET PIXEL is used (default is UNIT_ROWCOL = row/col).

<newPos> is optional numeric value specifying new printer column in <units>.

Returns current (before setting) printer column in <unit>s, or 0 when GUI printout

was yet not activated by oPrinter:GUIstart() or SET GUIPRINT ON or

PrintGui(.T.). Applicable in GUI mode only, ignored otherwise.

oPrinter:GUIcolWidth([unit]) ─> num METHOD

Get column width according the current font.

<unit> is optional numeric value (see UNIT_* in set.fh). If not given, current SET

COORD UNIT or SET PIXEL is used (default is UNIT_ROWCOL = row/col).

Returns current printer column width in <unit>s, or 0 when GUI printout was yet not

activated by oPrinter:GUIstart() or SET GUIPRINT ON or PrintGui(.T.). Applicable

in GUI mode only, ignored otherwise.

oPrinter:GUIdevOut(cText,[coColor], [oFont]) ─> NIL METHOD

Print text same as DevOut() or Qqout(...) functions and ?? command. This method is

for your convenience and equivalent to ::GUItextOut()

<cText> is the string to be printed. SET GUITRANS is considered.

<coColor> is optional color as string or Color object.

<oFont> is optional font specification as Font object.

Applicable when GUI printout was activated by oPrinter:GUIstart() or SET

GUIPRINT ON or PrintGui(.T.), ignored otherwise.

 OBJ 189

oPrinter:GUIdrawBox(p1,p2,p3,p4,p5,p6,p7,p8) ─> NIL METHOD

Draw box similar to @..BOX command or DispBox() function.

<p1> optional top row position. If not given, current row is used.

<p2> optional left column position. If not given, current column is used.

<p3> optional bottom row position, otherwise GuiMaxRow() is used.

<p4> optional right column position, otherwise GuiMaxCol() is used.

<p5> optional line width in dots, default is 1.

<p6> optional rounding corners (0..99), zero draws angled corners

<p7> optional color as string or array or Color object.

<p8> optional unit value (see UNIT_* in set.fh).

Applicable when GUI printout was activated by oPrinter:GUIstart() or SET GUIPRINT

ON or PrintGui(.T.), ignored otherwise.

oPrinter:GUIdrawLine(p1,p2,p3,p4,p5,p6,p7) ─> NIL METHOD

Draw line similar to @..DRAW or @..TO.. command.

<p1> optional start row position. If not given, current row is used.

<p2> optional start column position. If not given, current column is used.

<p3> end row position in <p7> units.

<p4> end column position in <p7> units.

<p5> optional line width in dots, default is 1.

<p6> optional color as string or array or Color object.

<p7> optional unit value (see UNIT_* in set.fh), default is row/col.

Applicable when GUI printout was activated by oPrinter:GUIstart() or SET

GUIPRINT ON or PrintGui(.T.), ignored otherwise.

oPrinter:GUIexec() ─> lSuccess METHOD

Print GUI buffer created by oPrinter:GUI*() methods or by common @..SAY, ?, ??,

@..DRAW, @..BOX commands or associated functions. Applicable after

oPrinter:GUIstart() or PrintGui(.T.) or SET GUIPRINT ON. This method is equivalent to

PrintGui() w/o parameter. Considered in GUI mode only, ignored otherwise.

OBJ 190

oPrinter:GUIfixPage([aSize]) ─> aSize METHOD

Adjust or report page adjustment size for currently by :Setup() selected printer. Such

adjustment may be desirable to utilize whole printable page size, since the most

standard drivers reports approximate values only.

<aSize> is an array specifying the printable page adjustment

aSize[1] = optional string containing printer driver name

aSize[2] = optional string containing page size

aSize[3] = optional string containing page orientation

aSize[4] = numeric value for unit sizes, one of UNIT_* in set.fh

aSize[5] = array of 4 numeric elements for 1st (and next) pages, all four values

are in units according to aSize[4]

aSize[5,1] = non-printable margin left

aSize[5,2] = printable width

aSize[5,3] = non-printable margin top

aSize[5,4] = printable height

aSize[6] = optional array of 4 numeric elements for 2nd (and next) pages, same

structure as aSize[5]. If not given, aSize[5] data are used also for second and

next pages.

Returns <aSize> in above structure or an empty array if adjustment was not specified

yet.

Example:
// Hint: for the first time, execute this example with disabled
// oPrinter:GUIfixPage(aSetup) statement, then adjust the aSetup
// values according to printout, enable oPrinter:GUIfixPage(aSetup)
// statement and check anew.
#ifdef FS_WIN32 // Windows
 aSetup := {"Canon MX850 series Printer", ;
 "A4", "Portrait", UNIT_MM, ;
 {3.4, 203.1, 5, 286.8}, {0, 203.1, 0, 286.8} }
#else // Linux
 aSetup := {"Canon_MX850", "A4", "Portrait", UNIT_CM, ;
 {0.31, 20.34, 0.42, 28.76} }
#endif
oPrinter:Setup() // select printer driver
if oPrinter:SetupAborted
 wait "sorry ..."
 quit
endif
oPrinter:GUIstart() // start GUI rendering
// oPrinter:GUIfixPage(aSetup) // optional: set adjustment
oPrinter:GUItestPage() // create test page #1
oPrinter:GUInewPage() // form feed
oPrinter:GUItestPage() // create test page #2
oPrinter:GUIexec() // end GUI rendering, print it
wait

 OBJ 191

oPrinter:GUImaxCol([unit]) ─> num METHOD

Reports max available columns per page

<unit> is optional numeric value (see UNIT_* in set.fh). If not given, current SET

COORD UNIT or SET PIXEL is used (default is UNIT_ROWCOL = row/col).

Returns max printer columns in <unit>s according to current font, or 0 when GUI

printout was yet not activated by oPrinter:GUIstart() or SET GUIPRINT ON or

PrintGui(.T.). Considered in GUI mode only, ignored otherwise.

oPrinter:GUImaxRow([unit]) ─> num METHOD

Reports max available rows per page

<unit> is optional numeric value (see UNIT_* in set.fh). If not given, current SET

COORD UNIT or SET PIXEL is used (default is UNIT_ROWCOL = row/col).

Returns max printer rows in <unit>s according to current font, or 0 when GUI

printout was yet not activated by oPrinter:GUIstart() or SET GUIPRINT ON or

PrintGui(.T.). Considered in GUI mode only, ignored otherwise.

oPrinter:GUInewLine() ─> NIL METHOD

Execute line feed, sets printer position on 1st column in new line, same as ? or

Qout(""). The row height is calculated from current font height plus global value from

_aGlobSetting[GSET_G_N_ROW_SPACING]. Applicable when GUI printout was

activated by oPrinter:GUIstart() or SET GUIPRINT ON or PrintGui(.T.), ignored

otherwise.

oPrinter:GUInewPage() ─> NIL METHOD

Execute form feed, sets printer position on 1st column in new page, increases page

number (oPrinter:GUIpageNum), comparable to EJECT command. Applicable when

GUI printout was activated by oPrinter: GUIstart() or SET GUIPRINT ON or

PrintGui(.T.), ignored otherwise.

oPrinter:GUIpageNum ─> num ACCESS

oPrinter:GUIpageNum := num ASSIGN

Get/set current page number starting at 1. 0 is reported when GUI printout was yet

not activated by oPrinter:GUIstart() or SET GUIPRINT ON or PrintGui(.T.), and after

oPrinter:GUIexec(). Considered in GUI mode only, ignored otherwise.

OBJ 192

oPrinter:GUIrowHeight([unit]) ─> num METHOD

Get row height according the current font.

<unit> is optional numeric value (see UNIT_* in set.fh). If not given, current SET

COORD UNIT or SET PIXEL is used (default is UNIT_ROWCOL = row/col).

Returns current printer row height in <unit>s, or 0 when GUI printout was yet not

activated by oPrinter:GUIstart() or by SET GUIPRINT ON or PrintGui(.T.).

Considered in GUI mode only, ignored otherwise.

oPrinter:GUIrow([unit], [newPos]) ─> nPos METHOD

Get/set current printer row.

<unit> is optional numeric value (see UNIT_* in set.fh). If not given, current SET

COORD UNIT or SET PIXEL is used (default is UNIT_ROWCOL = row/col).

<newPos> is optional numeric value specifying new printer row in <units>.

Returns current (before setting) printer row in <unit>s, or 0 when GUI printout was

yet not activated by oPrinter:GUIstart() or by SET GUIPRINT ON or PrintGui(.T.).

Considered in GUI mode only, ignored otherwise.

oPrinter:GUIsetColor([coColor]) ─> lSuccess (or cColor) METHOD

Set default printer text and drawing color. This can be temporarily overwritten by

PRINTCOLOR clause of @..SAY, @..DRAW, ?, ?? etc. commands, see below.

Considered in GUI mode only, ignored otherwise.

<coColor> is a string according to SET COLOR "foreground/background" or a Color

object. Only the first (standard) color pair is used. Empty string (default) disables

this setting, NIL or none parameter returns current setting as a string.

Returns .T. on success or .F. when GUI printout was yet not activated by

oPrinter:GUIstart() or by SET GUIPRINT ON or PrintGui(.T.). When <coColor> is

NIL, not given or is a empty string, the current color string is returned, when GUI

printout was activated.

The used color for GUI printouts is determined in this sequence:

a) PRINTCOLOR clause of @..SAY, @..DRAW, ?, ?? etc. commands

b) oPrinter:GUIsetColor() setting, if not empty

c) GUICOLOR clause of @..SAY, @..DRAW, ?, ?? etc. commands

d) SetColor() when SET GUICOLOR is ON

e) otherwise "N/W+"

 OBJ 193

oPrinter:GUIsetFont([oFont]) ─> oFont METHOD

Set or get default printer font (standard is set to Courier,10). This method is equivalent

to oPrinter:Font := oFont assignment. The font can be temporarily overwritten by

corresponding method parameter or the FONT command clause of @..SAY, ?, ??

etc. commands.

<oFont> is optional Font object.

Returns current font object (before setting) or NIL when GUI printout was yet not

activated by oPrinter:GUIstart() or by SET GUIPRINT ON or PrintGui(.T.).

Considered in GUI mode only, ignored otherwise.

oPrinter:GUIsetPos(row, col, [unit]) ─> lSuccess METHOD

Set new printer's position. Alternative methods are oPrinter:GUIcol(),

oPrinter:GUIrow(), oPrinter:GUInewLine() and oPrinter:GUInewPage().

<row> is numeric value specifying the row or y position in <unit>s.

<col> is numeric value specifying the col or y position in <unit>s.

<unit> is optional numeric value (see UNIT_* in set.fh). If not given, current SET

COORD UNIT or SET PIXEL is used (default is UNIT_ROWCOL = row/col).

Returns .T. on success or .F. when GUI printout was yet not activated by

oPrinter:GUIstart() or by SET GUIPRINT ON or PrintGui(.T.). Considered in GUI

mode only, ignored otherwise.

oPrinter:GUIstart([oFont]) ─> lSuccess METHOD

Init (or continue) GUI printout rendering. May be called subsequently; when the

rendering is already initialized, nothing happens. This method is invoked (without

parameter) also by SET GUIPRINT ON and PrintGui(.T.).

<oFont> is optional Font object, set as default.

Returns .T. on success or .F. when GUI printout was already activated Considered

in GUI mode only, ignored otherwise.

oPrinter:GUItestPage() ─> lSuccess METHOD

Print test page with driver/margin/page settings and box around the printable area.

See example in oPrinter:GUIfixPage() above.

Returns .T. on success or .F. when GUI printout was yet not activated by

oPrinter:GUIstart() or by SET GUIPRINT ON or PrintGui(.T.). Considered in GUI

mode only, ignored otherwise.

OBJ 194

oPrinter:GUItextOut(cText, [coColor], [oFont]) ─> NIL METHOD

Print text similarly to ?? command or DevOut() or Qqout() functions.

<cText> is the string to be printed. SET GUITRANS is considered.

<coColor> is optional color as string or Color object.

<oFont> is optional font specification as Font object.

Applicable when GUI printout was activated by oPrinter:GUIstart() or SET GUIPRINT

ON or PrintGui(.T.), ignored otherwise.

 OBJ 195

Push Button Class

The push button, also referred to as command button, is perhaps the most central widget in

any graphical user interface: Push it to perform some associated action. Typical actions are

Ok, Apply, Cancel, Close or Help by executing user defined function specified by oPush:Notify

or :Sblock or :Fblock instances.

The following code creates a push button labeled "Press Me" and executes function ButUDF()

when the button is pressed/clicked:

 oButton := PushButton{17,50, "Press Me", , {|obj| ButUDF(obj)} }
 oButton:Show()
 // ...
 FUNCTION ButUDF(oButt)
 @ 24,0 SAY "Button [" + oButt:Caption + "] pressed at " + time(1)
 return

FlagShip also support the use of push buttons via the common @..GET / READ interface

 local lButt := .F.
 local cData := space(20)
 @ 5,14 GET lButt PUSHBUTTON CAPTION "Any action" ;
 NOTIFY {|oPush| ButUDF(oPush) } // see above
 @ 7, 5 SAY "Any data"
 @ 7,14 GET cData
 READ

The text can be changed anytime later with oPushBut:Caption. You can also define a pixmap

with oPushBut:Pixmap(). The text/pixmap is manipulated as necessary to create "disabled"

appearance according to the respective GUI style when the button is disabled. A command

button can, in addition to the text or pixmap label, also display a little icon, see

oPushButt:Bitmap and oPushButt:SetImage() for details.

When the push button is activated, either with the mouse, the spacebar or a keyboard

accelerator, it calls a user code block, if such is supplied by oPushButt:Notify,

oPushButt:FBlock and/or oPushButt:SBlock, which then process the required action.

Command buttons in dialogs are by default auto default buttons, i.e. they become the default

push button automatically when they receive the keyboard input focus. A default button is a

command button that is activated when the users hits the Enter or Return key in a dialog.

Adjust this behavior with <expL4> during the instantiation, or later by oPushButt:Default(). The

default buttons reserve a little extra space necessary to draw a default button indicator. If you

do not want this space around your buttons, use oPushButt:SetStyle(BUT_AUTO-

BORDER,.F.) or oPushButt:SetStyle(SETSTYLE_FLAT)

There are sometimes confusions when to use push or other buttons. As a general rule, use a

push button when the application or dialog window performs an action when the user clicks on

it (like Apply, Cancel, Close, Help, etc.) and when the widget is supposed to have a wide,

OBJ 196

rectangular shape with a text label. See RadioButton, CheckButton and Menu classes for other

GUI command buttons.

As with other i/o and GUI classes in FlagShip, the generic PushButton class stay either for

_gPushButton for GUI based application, _tPushButton for terminal/text based, or

_bPushButton for basic i/o. When the general PushButton class is instantiated, FlagShip will

assign the proper i/o class either at compile-time or run-time.

Note: in the basic i/o mode, only a rough push button functionality is emulated by the sequential

in/output.

PushButton Class Index

Class PushButton

Inherits from: - (none)

Inherited by: - (none)

Class prototype: buttonclass.fh

Defines: button.fh

AsString() METHOD Return an identifying label for the button

Bitmap ACC/ASS A bitmap file displayed as a icon

Buffer ACC/ASS Indicates that the push button has been pushed

Caption ACC/ASS The displayed text of the button

Cargo ACC/ASS User data of any type

ClassName() METHOD returns "PUSHBUTTON"

Col ACC/ASS Upper left push button coordinate

ColorSpec ACC/ASS Color attributes, ignored in GUI mode

CurrentText ACC/ASS Same as oPushButton:Caption

Display() METHOD Display the PushButton, same as Show()

Enable() METHOD Enable or disable the button availability

Exec() METHOD Display the PushButton widget and execute handler

ExitState ACC/ASS state of @..GET/READ

FBlock ACC/ASS Code block evaluated at receiving/losing focus

Font ACC/ASS The used font object

Font() METHOD The used font object

GuiColor ACC/ASS Color attributes for GUI mode

HasFocus ACC Status of the bush button input focus

Height() METHOD Height of the push button widget

Hide() METHOD Hide the PushButton

HitTest() METHOD Determining if the mouse is within the push button

KillFocus() METHOD Take input focus away from the PushButton

Message ACC/ASS Short help in the window status line

Notify ACC/ASS Code block evaluated when the push button is pressed

OnClickAction ACC/ASS Action in READ triggered by code block

OnClickKeys ACC/ASS Simulates key press, triggered by code block

 OBJ 197

Resize() METHOD Resize the push button widget to a new size

Row ACC/ASS Upper left push button coordinate

SBlock ACC/ASS Code block evaluated on button push and release

Select() METHOD Simulates the button press

SetFocus() METHOD Gives input focus to the PushButton object

SetImage() MMETHOD Assign an image to PushButton

SetStyle() METHOD Set/return the style of the Push button widget

Show() METHOD Display the PushButton, same as :Display()

SizeX ACC/ASS The horizontal size (width) of the widget

SizeY ACC/ASS The vertical size (height) of the widget

Style ACC/ASS For terminal mode only

ToolTip ACC/ASS Short pop-up info message

Visible ACC Report the push button visibility

Width() METHOD Set/return the width of the push button widget

X() METHOD Set/return the x coordinate of the button widget

Y() METHOD Set/return the y coordinate of the button widget

OBJ 198

PushButton Class Instantiation

Syntax 1:

oPushButton := [_g|_t|_b]PushButton {[nR], [nC],
[cText], [lDef], [bNotif], [lPix]}

Syntax 2:

oPushButton := [_g|_t|_b]PushButtonNew ([nR], [nC],
[cText], [lDef], [bNotif], [lPix])

Syntax 3:

oPushButton := PushButton ([nR], [nC], [cText],
[lDef], [bNotif], [lPix])

Syntax 4:

oPushButton := PushButton {[oOwn], [nId], [oaPos],
[oaSize], [cText], [nSty]}

Any of the above syntax instantiate new push button object. Syntax [1], [2] and [3]

are standard FlagShip and should be preferred. Syntax [4] is supported for

compatibility to VO.

<nR> Vertical coordinate (row) of the upper left edge. Either in pixels or col/row

coordinates, dependent on the current state of SET PIXEL on|OFF or the <lPix>

parameter. Modifiable by oPushButt:Row or oPushButt:Y(nR,[lPix]).

<nC> Horizontal coordinate (column) of the upper left edge. Either in pixels or col/row

coordinates, dependent on the current state of SET PIXEL on|OFF or the <lPix>

parameter. Modifiable by oPushButt:Col or oPushButt:X(nC,[lPix]).

<cText> The informational text to be printed in the button. If not given, null-string ""

(i.e. no text) is displayed. See additional details in oPushButt:Caption.

<lDef> Set this button as default, i.e. button that is activated when the users hits the

Enter or Return key. If this argument is not specified or of other value than .T.,

the button can only be activated by mouse click. To perform the "click" by

keyboard, use Tab or cursor keys in conjunction with Return or space key.

<bNotif> is an optional code block, equivalent to oPushButton:Notify assignment. To

activate this codeblock, subsequent oPushBut:Show() or oPushBut:Display() is

required.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in

row/col coordinates, otherwise the current SET PIXEL is used.

<oOwn> The window that owns the button. If <expO1> is not given or empty, the

User Window object <oUserWindow> is used.

<nId> An unique ID between 1 and 32000 which identify the button. If not given or is

out of range, a next free ID will automatically be determined by FlagShip.

 OBJ 199

<oaPos> Button coordinates (upper left edge). Either a Point object (which allows

entry in pixels or col/row), or an array of two numeric elements specifying the

coordinates {row, col} in pixel. If not given 0,0 is assumed.

<oaSize> Button size (height and width). Either a Dimension object (which allows

entry in pixels or col/row), or an array of two numeric elements specifying the

button size {height, width} in pixel. If not given, the default button size is

calculated from the current font and <cText>.

<nSty> The style of the push button, see BS_* constants in the button.fh file.

Modifiable by oPushButton:SetStyle()

Compatibility: Available also in CL53 (syntax 3, first three params) and VO (syntax 4).

Example 1:

See also examples in FUN.PushButton() as well as above at the begin of Push Button

Class description

Example 2:
 local oPush1, oPush2
 SET FONT "Courier", 10
 oPush1 := PushButton(3, 10)
 oPush1:Width(110,.T.) // width in pixel
 oPush1:Height(28,.T.) // height in pixel
 oPush1:Caption := " Hi!" // button caption
 oPush1:Bitmap := "hello.png" // display image and/or text
 oPush1:Notify := {|obj| myNotif(obj)} // action
 oPush1:Show() // display

 oPush2 := PushButton(3, 30, "Action 2", , {|obj| myNotif(obj)})
 oPush2:Bitmap := "action2.gif" // display image if available
 oPush2:Show()
 setpos(8,0)
 wait
 return

 FUNCTION myNotif(pushObj)
 @ 7,10 say "Push button named [" + pushObj:Caption + "] pressed at " + ;
 time()
 return

OBJ 200

PushButton Class Properties

oPushButton:AsString() ─> cLabel

Return an identifying label for the button of the form <ClassName>-<Caption>. For

compatibility to VO only, don't use for new development.

oPushButton:Bitmap ─> cFilename ACCESS

oPushButton:Bitmap := cFilename ASSIGN

Contains a character string that indicates a bitmap file to be displayed as a icon in

addition to the text set by oPushButton:Caption. Specify full qualified name (including

path) if the image file is not in the current or the SET PATH directory. FlagShip detects

the image format automatically from the image data. Currently are supported

following image file formats: .png, .bmp, .xbm, .xpm, .jpeg (.jpg) and .pnm in format

PBM (P1 or P4), PGM (P2 or P5), PPM (P3 or P6). It also support .gif, but note:

Unisys has changed its position regarding GIF. If you are in a country where Unisys

holds a patent on LZW compression (Canada, France, Germany, Italy, Japan, UK,

USA) Unisys may require you to license that technology. Therefore, GIF support may

be removed completely in a future version of FlagShip. We recommend using

the .png or .jpg format.

oPushButton:Bitmap Acc/Ass is a shortcut for oPushButton:SetImage(cFile-

Name, .T., .T.) which crops the image to default or given size.

oPushButton:Buffer ─> lValue ACCESS

Contains a logical value indicating that the push button has been pushed (.T.) or not

(.F.). The .T. state remains permanent as long as the object has focus, as opposite

to oPushButton:Modified where the value changes on any push by mouse click and

keyboard.

oPushButton:Caption ─> cText ACCESS

oPushButton:Caption := cText ASSIGN

A string representing the text that is displayed in the push button. If the text contains

"&" in the string, gPushButton creates an automatic accelerator key for the character

following the ampersand &. To display the ampersand itself, enter it twice. E.g. "&You

&& Me" will display button labeled "You & Me" and the button gets an automatic

accelerator key, Alt-Y. The string returned by access is the plain text only. For the

example above, oPushButton:Caption will return "You & Me".

 OBJ 201

oPushButton:Cargo ─> value ACCESS

oPushButton:Cargo := value ASSIGN

Contains user data of any type, to store information retrieved later in the program.

Not used by oPushButton itself.

oPushButton:ClassName() ─> cName

Returns "PUSHBUTTON" string. You may also use IsObjClass() function which can

determine the from PushButton inherited classes.

oPushButton:Col ─> nCol ACCESS

oPushButton:Col := nCol ASSIGN

Contains a numeric value that indicates the screen column (upper left edge) where

the push button is displayed. The <nCol> value is either in pixel or col/row coordinates

depending on the current state of SET PIXEL on|OFF. On assignment, the push

button widget is moved to the new position. It is similar to oPushButton:X() which

allows you to specify or get the column value independent on the SET PIXEL state.

oPushButton:ColorSpec ─> cColor ACCESS

oPushButton:ColorSpec := cColor ASSIGN

Contains a character string specifying the color attributes that are used by the

oPushButon:Display() or oPushButton:Show() method. Ignored in GUI mode.

oPushButton:CurrentText ─> cText ACCESS

oPushButton:CurrentText := cText ASSIGN

For compatibility to VO only, same as oPushButton:Caption.

oPushButton:Display() ─> NIL

Display the PushButton, equivalent to oPushButton:Show(). See also

oPushButton:Hide()

oPushButton:Enable([expL1]) ─> lEnabled

Enable or disable the button availability. An enabled push button (the default)

receives keyboard and mouse events; a disabled widget does not. Note that an

enabled widget receives keyboard events only when it is in focus. A disabled button

is shown grayed out. Argument (optional):

<expL1> enable (.T.) or disable (.F.) the button press. If not specified or is not logical,

only the current status is returned.

<lEnabled> reports the enable status at the time of entering this method, i.e. before

the possible status change.

OBJ 202

 oPushButton:Exec() ─> lPushed

Display the PushButton widget and execute the default or used handler. Returns

logical value signaling push.

oPushButton:ExitState ─> iState ACCESS

oPushButton:ExitState := iState ASSIGN

Contains a numeric value indicating the desired action, or the state when the object

was exited and is used in the user-modifiable READ (see

<FlagShip_dir>/system/getsys.prg). Applicable only in @...GET PUSHBUT / READ

and is same as Get:ExitState. If not in @..GET/READ, the <iState> value is -9.

Val getexit.fh Description

0 GE_NOEXIT No exit attempted, prepare GET for editing

1 GE_UP Go to previous GET

2 GE_DOWN Go to next GET

3 GE_TOP Go to first GET

4 GE_BOTTOM Go to last GET

5 GE_ENTER Normal end of GET editing

6 GE_WRITE Terminate READ, save GET

7 GE_ESCAPE Terminate READ, do not save GET

7 GE_EXIT same as GE_ESCAPE

8 GE_WHEN WHEN clause unsatisfied

oPushButton:FBlock ─> cBlock ACCESS

oPushButton:FBlock := cBlock ASSIGN

Contains an optional code block ("focus block") that, when present, is evaluated each

time the PushButton object receives or loses input focus. The code block receives

two arguments: lFocusState and the object self. You also may use the

PushButton:hasFocus instance to determine if the push button is receiving or losing

input focus. A value of true (.T.) indicates that it is receiving input focus; otherwise, a

value of false (.F.) indicates that it is losing input focus. See also oPushButton:Notify

and oPushButton:SBlock for other call-back interfaces.

oPushButton:Font ─> oFont ACCESS

oPushButton:Font := oFont ASSIGN

oPushButton:Font([oFont]) ─> oFont

Set, get or redefine the used push buttons font.

<oFont> is the used Font object. If nor specified or is NIL, the default oApplic:Font is

used. To set own font, assign new font object to PushButton, or to local var and

than the font object to PushButton, e.g.

local oPushFont := Font{"Arial", 12, "B")
oPushButton:Font := oPushFont

 OBJ 203

oPushButton:GuiColor ─> cColor ACCESS

oPushButton:GuiColor := cColor ASSIGN

Set, get or redefine the push buttons color in GUI mode.

<cColor> is a string containing foreground and/or background color similar to SET

COLOR.

oPushButton:HasFocus ─> lFocus ACCESS

A logical value that is set to TRUE when the object receive input focus, and is reset

to FALSE when the object loses the input focus. See also oPushButton:Buffer and

oPushButton:FBlock

oPushButton:Height([expN1], [lPixel]) ─> nHeight

Set and/or return the height (y size) of the push button widget. Arguments (optional):

<expN1> The height of the widget. If not given or is NIL, the value remain unchanged

and only the current size is returned. On assignment, the push button widget is

resized accordingly.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in

row/col coordinates, otherwise the current SET PIXEL is used.

<nHeight> The y (row) coordinate of the widget at the time of entering this method,

either in pixel or col/row coordinates, depending on <expL2> argument.

oPushButton:Hide() ─> NIL

Hide the PushButton. See also oPushButton:Show()

oPushButton:HitTest([expN1], [expN2], [lPixel]) ─> nMouseStatus

Determining if the mouse cursor is within the region of the screen that the push button

occupies. Arguments (optional):

<expN1> the current row position of the mouse cursor relative to the user window,

passed e.g. as return value from the MROW() function. If not given, FlagShip

determines the mouse position automatically.

<expN2> the current column position of the mouse cursor relative to the user window,

passed e.g. as return value from the MCOL() function. If not given, FlagShip

determines the mouse position automatically.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in

row/col coordinates, otherwise the current SET PIXEL is used.

OBJ 204

<returnN> : a numeric value that indicates the relationship of the mouse cursor with

the push button:

0 The mouse cursor is not within the region of the screen that the push button

occupies.

< 0 The mouse cursor is within the region of the screen that the push button

occupies. FlagShip generally returns HTCLIENT == -2049 when the mouse was

clicked within the push button area. Note: the constants HTNOWHERE (== 0)

and HTTOPLEFT ... HTCLIENT (all < 0) are supported as well and are specified

in button.fh

oPushButton:KillFocus() ─> self

Take input focus away from the PushButton. Upon calling this method and the object

has a focus, the object redisplays itself and, if present, evaluates the code block

assigned to oPushButton:FBlock, then the oPushButton:Buffer is set .F. See also

oPushButton:SetFocus()

oPushButton:Message ─> cMessage ACCESS

oPushButton:Message := cMessage ASSIGN

Contains a string that display short help in the window status line.

oPushButton:Modified ─> lClick ACCESS

A logical value that is set to TRUE when the user clicks on a button, and reset to

FALSE when the mouse button is released. See also oPushButton:Buffer

oPushButton:Notify ─> cBlock ACCESS

oPushButton:Notify := cBlock ASSIGN

Contains an optional code block that, when present, is evaluated each time the

PushButton is pressed to enable the application to react on the button press. The

code block takes one argument, the object self. See also oPushButton:FBlock and

oPushButton:SBlock for other call-back interfaces.

oPushButton:OnClickAction ─> num ACCESS

oPushButton:OnClickAction := num ASSIGN

Contains either NIL or numeric value specifying next READ action (considered in

getsys.prg handler). This request is usually set in get:Notify (or other) code block,

and is same as oPushButton:ExitState property.

See also oPushButton:OnClickKeys

 OBJ 205

oPushButton:OnClickKeys ─> cKeys ACCESS

oPushButton:OnClickKeys := cKeys ASSIGN

Contains either NIL or a string comparable to KEYBOARD, which keys are evaluated

after exit from push:Notify (or other) code block. You may set in the code block e.g.

obj:OnClickKeys := chr(K_UP, K_UP) to skip two fields up when this field is clicked.

Considered in getsys.prg READ handler.

oPushButton:Origin ─> oPoint ACCESS

oPushButton:Origin := oPoint ASSIGN

Contains the top left coordinate as Point object. Supported for VO compatibility only.

Don't use for a new development, use oPushButton:X() and oPushButton:Y() instead.

oPushButton:Resize([expN1], [expN2], [lPixel]) ─> self

Resize the push button widget to a new size. Arguments:

<expN1> the new size in rows (height, also decimal fraction) or a vertical size of the

application window in pixel (depending on the current SET PIXEL setting and the

<lPixel> value). If not given, the current height remains unchanged.

<expN2> the new size in columns (width, also decimal fraction) or a horizontal size

of the application window in pixel (depending on the current SET PIXEL setting

and the <lPixel> value). If not given, the current width remains unchanged.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in

row/col coordinates, otherwise the current SET PIXEL is used.

oPushButton:Row ─> nRow ACCESS

oPushButton:Row := nRow ASSIGN

Contains a numeric value that indicates the screen row (upper left edge) where the

push button is displayed. The <nRow> value is either in pixel or col/row coordinates

depending on the current state of SET PIXEL on|OFF. On assignment, the push

button widget is moved to the new position. Mainly for Clipper compatibility, for a new

development preferably use oPushButton:Y() which allows you to specify or get the

row value independent on the SET PIXEL state.

oPushButton:SBlock ─> cBlock ACCESS

oPushButton:SBlock := cBlock ASSIGN

Contains an optional code block ("state block") that, when present, is evaluated each

time the PushButton object state (i.e. press/release) changes. The code block

receives two arguments: a logical argument which if .T. when the button is pressed,

and .F. when released. The second argument is the object self. You also may check

by oPushButton:Buffer whether the button was already pressed during this focus

period. See also oPushButton:Notify (which is evaluated only on button push) and

oPushButton:FBlock (which is evaluated on focus change) for other call-back

interfaces.

OBJ 206

oPushButton:Select([expN1]) ─> self

Activates the Push button object, i.e. simulates the button press. Argument (optional):

<expN1> is a numeric value that indicates the key (as inkey() value) that triggered

the push buttons activation. If passed, Select() waits for the key specified by

<expN1> to be released before continuing.

When this method activated, it performs several operations: First, :Buffer is set to true

(.T.). Then, it calls :Display() to show the button in its highlighted color or in the

pushed GUI style. If <expN1> is passed, it waits for the key specified by <expN1> to

be released. Then, if present, it evaluates its :SBlock code block.

A push buttons state is typically changed when the space bar or enter key is pressed

or the mouse's left button is pressed when its cursor is within the push buttons region.

Calling this method is meaningful only when the PushButton object has input focus,

and is ignored otherwise.

oPushButton:SetFocus() ─> self

Gives input focus to the PushButton object. Upon calling this method, and the object

has not a focus yet, the object redisplays itself, sets the oPushButton:Buffer to .F.

and, if present, evaluates the code block assigned to oPushButton:FBlock. See also

oPushButton:KillFocus()

oPushButton:SetImage([cFile], [lFrame], [lCrop], [lFromVar]) ─> self

Retrieve or assign an image to PushButton object.

<cFile> is the image file name. FS_SET() and SET PATH are considered. If not

given, the method return the currently used image file name or NIL if none. All

common image formats (.gif, .png, .bmp, .jpeg (.jpg), .xbm, .xpm and .pnm) are

accepted. When <lFromVar> is set .T., the <cFile> is a character string

containing the image self.

<lFrame> is optional logical value, specifying if the button frame should be drawn.

The default is .T. which draw the frame.

<lCrop> is optional logical value, specifying whether the image should be scaled or

cropped. The default is .F. which scales the image to given button height and/or

width. For best scaling, to calculate the button size automatically from the image

size, either set only button height or width, or reset one of them to 0 by

pb:Hight(0) or pb:Width(0) - but before invoking the oPushButton:SetImage()

method.

<lFromVar> is optional logical value, specifying whether image file should be read

from disk file (.F.) or from character variable (.T.), default is .F.

 OBJ 207

Example:

 oBut1 := PushButton(10,5, , , {|obj| alert("button 1 pressed")})
 oBut1:SetImage("myimage.jpeg") // height = 1 row, width = auto
 oBut1:Display()
 oBut2 := PushButton(12,5, , , {|obj| alert("button 2 pressed")})
 oBut2:Width(50,.T.) // width = 50 pixel, height = auto
 cImg := memoread("otherimage.png")
 oBut2:SetImage(cImg, , ,.T.)
 oBut2:Display()

oPushButton:SetStyle([expN1], [expL2]) ─> nStyle

Set and/or return the style of the Push button widget. Arguments:

<expN1> A style constant applicable for the push button, see BS_* BUT_* and

SETSTYLE_* constants in the button.fh file

<expL2> True (.T.) enables the specified style; False (.F.) disables it. If omitted, the

default is True.

In GUI mode, only

 oPushButton:SetStyle(SETSTYLE_DEFAULT) = raised button
 oPushButton:SetStyle(BUT_AUTOBORDER, .T.) = raised button
 oPushButton:SetStyle(SETSTYLE_FLAT) or ...(BS_FLAT) = no border
 oPushButton:SetStyle(BUT_AUTOBORDER, .F.) = no border

is considered.

oPushButton:Show() ─> NIL

Display the PushButton, equivalent to oPushButton:Display(). See also

oPushButton:Hide()

oPushButton:Size ─> oSize ACCESS

oPushButton:Size := oSize ASSIGN

Contains the push button size as Dimension (or Size) object. Supported for VO

compatibility only. Don't use for a new development, use oPushButton:Height() and

oPushButton:Width() instead.

oPushButton:SizeX ─> nCol ACCESS

oPushButton:SizeX := nCol ASSIGN

Contains a numeric value that indicates the horizontal size (width, columns) of the

push button. The <nCol> value is either in pixel or col/row coordinates depending on

the current state of SET PIXEL on|OFF. See also oPushButton:Width() which allows

you to specify or receive the column value type independent on the SET PIXEL state.

OBJ 208

oPushButton:SizeY ─> nRow ACCESS

oPushButton:SizeY := nRow ASSIGN

Contains a numeric value that indicates the vertical size (height, rows) of the push

button. The <nRow> value is either in pixel or col/row coordinates depending on the

current state of SET PIXEL on|OFF. See also oPushButton:Height() which allows you

to specify or receive the size value independent on the SET PIXEL state.

oPushButton:Style ─> cStyle ACCESS

oPushButton:Style := cStyle ASSIGN

For terminal mode only: button is drawn as <text>, or by single or double line

characters. Ignored in GUI mode, where oPushButton:SetStyle can be used.

oPushButton:ToolTip ─> cTip ACCESS

oPushButton:ToolTip := cTip ASSIGN

Set or retrieve the ToolTip string. A Tool tip is a short, one-line text reminding the

user of the push button widget. Apply for GUI mode only, ignored otherwise.

oPushButton:Visible ─> lVisible ACCESS

Reports the push button visibility. It returns FALSE (.F.) only when the widget is

hidden (invisible), see oPushButton:Hide(.T.). Otherwise, TRUE (.T.) is returned even

if the button is not accessible, see oPushButton:Enable(.F.).

oPushButton:Width([expN1], [lPixel]) ─> nWidth

Set and/or return the width (x size) of the push button widget.

<expN1> The width of the widget. If not given or is NIL, the value remain unchanged

and only the current size is returned. On assignment, the push button widget is

resized accordingly.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in

row/col coordinates, otherwise the current SET PIXEL is used.

<nWidth> The width (x size) coordinate of the widget at the time of entering this

method, either in pixel or col/row coordinates, depending on <lPixel> argument.

oPushButton:X([expN1], [lPixel]) ─> nColumn

Set and/or return the x (column) coordinate of the Push button widget.

<expN1> The x (column) coordinate of the widget. If not given or is NIL, the X value

remain unchanged and only the current size is returned. On assignment, the

push button widget is moved to the new position.

 OBJ 209

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in

row/col coordinates, otherwise the current SET PIXEL is used.

<nColumn> The x (column) coordinate of the widget at the time of entering this

method, either in pixel or col/row coordinates, depending on <lPixel> argument.

oPushButton:Y([expN1], [lPixel]) ─> nRow

Set and/or return the y (row) coordinate of the Push button widget.

<expN1> The y (row) coordinate of the widget. If not given or is NIL, the Y value

remain unchanged and only the current size is returned. On assignment, the

push button widget is moved to the new position.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in

row/col coordinates, otherwise the current SET PIXEL is used.

<nRow> The y (row) coordinate of the widget at the time of entering this method,

either in pixel or col/row coordinates, depending on <lPixel> argument.

OBJ 210

RadioButton Class

Creates radio button, which is a widget (controls) that can be toggled ON or OFF by a user. A

radio button is said to be "pressed" or "selected" when it is filled in, and the RadioButton:

Pressed (as well as :Button and :Value) access is TRUE. The radio button object is usually

not handled by its own, but in a group using the RadioGroup class.

Radio buttons are typically presented in related groups (see also the RadioGroup Class) and

provide mutually exclusive responses to a condition where only one choice is appropriate. (For

example, a group of radio buttons might allow you to choose Inches, Centimeters, Pixel or

Picas for formatting, or Male/Female for gender, etc.)

Only one radio button can be on in each radio button group. When a different button is pressed,

the previously selected button is turned off.

You can create a group of radio buttons by using RadioGroup object. FlagShip also support

the use of RadioGroups via the common @..GET / READ interface.

Example 1: This example creates two radio buttons, one with a caption of "Male" and the

other "Female" and groups them together using the RadioGroup class:

 LOCAL oRadio1, oRadio2, oRgroup AS object
 oRadio1 := RadioButton{10,5,"Male"}
 oRadio1:CapCol := 9
 oRadio1:CapRow := 10
 oRadio2 := RadioButton(11,5)
 oRadio2:Caption := "Female"
 oRadio2:CapCol := 9
 oRadio2:CapRow := 11

 oRgroup := RadioGroup(9,3,12,16)
 oRgroup:AddItem(oRadio1)
 oRgroup:AddItem(oRadio2)
 oRgroup:Show()
 ? "you are", if(oRadio1:Buffer, "male", ;
 if(oRadio2:Buffer, "female", "of unknown gender"))

 OBJ 211

Example 2: This example creates and integrates a radio button group within a GetList and

activates it by performing a READ. The selected radio button is returned in the nGender

variable.

 LOCAL cName := SPACE(20), cFirst := space(20)
 LOCAL nGender:= 1, aGender := array(2)
 SET COLOR TO "GR+/B,N/W,GR+/B,GR+/B,W+/G,R+/B"
 CLS
 aGender[1] := RadioButton{6,42,"&Male"}
// aGender[1]:ColorSpec := "GR+/B,W+/B,G+/B,R+/B,GR+/B,R+/B,R+/B"

 aGender[2] := RadioButton{7,42,"&Female"}

 @ if(AppIoMode() == "G", 4.5,4), 41 SAY "Gender"
 @ 5,10 SAY "Name " GET cName
 @ 5.5,40,8,53 GET nGender RADIOGROUP aGender ;
 COLOR "W+/B,GR+/B,G+/B,R+/B,GR+/B,R+/B,R+/B"
 @ 7,10 SAY "First" GET cFirst
 READ
 @ 9,16 SAY if(nGender == 1, "Mr. ", "Mrs. ") + ;
 trim(cFirst) + " " + trim(cName)
 wait

As with other GUI classes in FlagShip, the general RadioButton class is internally inherited by

three different sub-classes: _gRadioButton for GUI based application, _tRadioButton for

terminal/text based mode, and _bRadioButton for basic i/o mode, all defined in the boxclass.fh

header file. The proper class, corresponding to the used i/o mode, is set either at compile time

with the compiler switch "-io=g|t|b", or latest at run-time depending on the currently used

environment.

Note: in the basic i/o mode, only a rough radio button functionality is simulated by the

sequential in/output.

RadioButton Class Index

Class RadioButton

Inherits from: - (none)

Inherited by: RadioGroup

Class prototype: boxclass.fh

Defines: button.fh, set.fh

OBJ 212

Bitmaps ACC/ASS Available for compatibility to Clipper only

Buffer ACC Indicates whether the button is checked or not

CapCol ACC/ASS Screen column of the radio button caption

CapCol() METHOD Screen column of the radio button caption

CapRow ACC/ASS Screen row of the radio button caption

CapRow() METHOD Screen row of the radio button caption

Caption ACC/ASS String that describes the button caption

Cargo ACC/ASS A user value of any type

Col ACC/ASS Screen column where the radio button is displayed

Col() METHOD Screen column where the radio button is displayed

ColorSpec ACC/ASS Color attributes

Data ACC/ASS Returned value instead of relative position

Destroy() METHOD Destroys the RadioButton object

Display() METHOD Show the radio button and its caption on the screen

Enabled ACC/ASS Indicates whether radio button is selectable

Fblock ACC/ASS Code block evaluated at receiving/losing focus

HasFocus ACC Indicates whether the object has input focus

Height ACC/ASS The height of the radio button

Height() METHOD The height of the radio button

HitTest() METHOD Determines if the mouse cursor is within the button

IsAccel() METHOD Determines whether a key press is button's hot key

KillFocus() METHOD Take input focus away from a radio button object

Message ACC/ASS String displayed in the windows status bar

Pressed ACC/ASS Indicates whether the button is selected

Row ACC/ASS Screen row where the radio button is displayed

Row() METHOD Screen row where the radio button is displayed

Sblock ACC/ASS Code block evaluated at user selection

Select() METHOD Set/clear the buttons selected status

SetFocus() METHOD Set input focus to a radio button object

Show() METHOD Activates the default or user's input handler

Style ACC/ASS Delimiter and status display characters

ToolTip ACC/ASS Short pop-up info message

TypeOut ACC Always .F.

Value ACC/ASS Indicates whether the button is selected or not

Width ACC/ASS The width of the radio button

Width() METHOD The width of the radio button

 OBJ 213

RadioButton Class Instantiation

oRadBut := [_g|_t|_b]RadioButton { [nR],[nC],[cText],[uData],[lPix] } [1]

oRadBut := [_g|_t|_b]RadioButtonNew([nR],[nC],[cText],[uData],[lPix]) [2]

oRadBut := RadioButton ([nR], [nC], [cText], [uData], [lPixel]) [3]

oRadBut := RadioButton { [oOwn], [nId], [oPoint], [oDim], [<cText>] } [4]

Any of the above syntax instantiate new radio button object. Syntax [1] and [2] are

standard FlagShip and should be preferred. Syntax [3] is supported for compatibility

to Clipper 5.3, and [4] is supported for compatibility to VO.

The widget (control) remains invisible until you invoke oRadBut:Show() or

oRadBut:Display(). This allows the program to set up the control correctly (with the

correct size, position, and any other parameters), while avoiding the "visual noise" of

changing controls.

<nR> row in coordinates or pixel, optional. If not specified, 0 is the default. See

additional details in the oRadBut:Row description.

<nC> column in coordinates or pixel, optional. If not specified, 0 is the default. See

additional details in the oRadBut:Col description.

<cText> caption text, optional. If not redefined by :CapCol and/or :CapRow, the text

is displayed in the <nR> row and <nC> + 4 column.

<uData> optional, assigned data of any type, returned by RadioGroup:Value

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in

row/col coordinates, otherwise the current SET PIXEL status is used.

<oOwn> owner object of the radio button, optional. Default is the oApplic object.

<nId> an unique ID between 1 and 8000 of the radio button, optional. If not specified,

internal ID is used.

<oPoint> the origin of the radio button, in canvas coordinates

<oDim> the dimension of the radio button, in canvas coordinates

Compatibility: Available also in CL53 (syntax 3) and VO (syntax 4). See also:

oRadBut:Destroy()

OBJ 214

RadioButton Class Properties

oRadBut:Bitmaps ─> aFile ACCESS

oRadBut:Bitmaps := aFile ASSIGN

This property is available for compatibility to Clipper (in semi- graphical mode) only

and is not used by FlagShip object.

Compatibility: Available also in CL53.

oRadBut:Buffer ─> lChecked ACCESS

<lChecked> is a logical value that indicates whether the radio button is selected or

not. A value of true (.T.) indicates that it is selected and a value of false (.F.)

indicates that it is not. Equivalent to oRadBut:Checked instance.

Compatibility: Available also in CL53.

See also: oRadBut:Checked, oRadBut:Select()

oRadBut:CapCol ─> nCol ACCESS

oRadBut:CapCol := nCol ASSIGN

oRadBut:CapCol([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the screen column where the radio button

caption is displayed. The input and output value is either in coordinates or in

pixels, depending on the current SET PIXEL setting. The default setting is

oRadBut:Col + 4 columns at instantiation time.

<lPixel> is optional value indicating if the passed and returned value is in coordinates

or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are in

coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Access/assign is available in CL53.

See also: oRadBut:CapRow, oRadBut:Caption

oRadBut:CapRow ─> nRow ACCESS

oRadBut:CapRow := nRow ASSIGN

oRadBut:CapRow([nRow], [lPixel]) ─> nRow

<nRow> is a numeric value that indicates the screen row where the radio button

caption is displayed. The input and output value is either in coordinates or in

pixels, depending on the current SET PIXEL setting. The default setting is taken

from oRadBut:Row at instantiation time.

 OBJ 215

<lPixel> is optional value indicating if the set/get value is in coordinates or pixels. If

true(.T.), the row data are in pixel; if false (.F.), data are in coordinates, otherwise

the current SET PIXEL status is used.

Compatibility: Available also in CL53.

See also: oRadBut:CapCol, oRadBut:Caption

oRadBut:Caption ─> cText ACCESS

oRadBut:Caption := cText ASSIGN

<cText> is a string that describes the radio button caption. If not redefined by :CapCol

and/or :CapRow, the text is displayed at the :Row and :Col + 4 position set at

instantiation time. When present, the & character specifies that the character

immediately following it in the caption is the radio button accelerator key. The

accelerator key provides a quick and convenient mechanism for the user to move

input focus from one data input control to a radio button. The user performs the

selection by pressing the Alt key in combination with an accelerator key. The

case of an accelerator key is ignored.

Compatibility: Available also in CL53 and VO.

See also: oRadBut:CapCol, oRadBut:Caption

oRadBut:Cargo ─> exp ACCESS

oRadBut:Cargo := exp ASSIGN

<exp> is a value of any type. The RadioButton:Cargo slot holds any user-definable

data which can be retrieved later. This property is not used by the RadioButton

object itself.

Compatibility: Available also in CL53.

oRadBut:Col ─> nCol ACCESS

oRadBut:Col := nCol ASSIGN

oRadBut:Col([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the screen column where the radio button

is displayed. With Access/assign, the value is either in coordinates or pixels

according to the current SET PIXEL status.

<lPixel> is optional value indicating if the passed and returned value is in coordinates

or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are in

coordinates, otherwise the current SET PIXEL status is used.

With terminal i/o, the <nCol> value specifies the column where the first character of

oRadBut:Stype is displayed, i.e. where the left parenthesis (*) of the radio button

representation display. The whole radio button occupy 3 columns.

OBJ 216

With GUI i/o, the radio button is displayed as a widget (control) and <nCol> is the

leftmost widget coordinate. To ensure the same look and feel to an application

running in textual mode, and to display the widget at approx. the same screen

position, the given <nCol> coordinate is automatically adapted by adding a pixel

value taken from the global array elements _aGlobSetting[GSET_G_N_RADBUT_COL]

and _aGlobSetting [GSET_G_N_ RADBUT_WIDTH] which may be positive or negative

and are user modifiable.

Compatibility: Access/assign is available in CL53.

See also: oRadBut:Row, RadioButton{} instantiation

oRadBut:ColorSpec ─> cAttrib ACCESS

oRadBut:ColorSpec := cAttrib ASSIGN

<cAttrib> is a character string specifying the color attributes that are used by the

display() and show() method. May be also set or redefined by RadioGroup:

SetColor(). The string must contain eight color specifiers, otherwise the rest

remain unchanged.

Position in Applies To Default value used

<cAttrib> from curr SET COLOR

1 Radio button without input focus, unselected Unselected

2 Radio button without input focus, selected Unselected

3 Radio button with input focus, unselected Enhanced

4 Radio button with input focus, selected Enhanced

5 Radio button's caption Standard

6 Radio button caption's accel. key w/o focus Standard

7 Radio button caption's accel. key with focus Background

8 Radio button and caption, disabled Border

Specifying "-" for foreground or background lets the original color unchanged, which

enables you to change the required color attribute only.

Compatibility: Available also in CL53, which support seven attributes. This property

is considered in terminal mode only, and ignored in GUI mode.

See also: oRadBut:HasFocus, :Enabled, SET COLOR, SET()

oRadBut:Data ─> exp ACCESS

oRadBut:Data := exp ASSIGN

<exp> is a value of any type. If specified, the RadioGroup:Value returns this value

instead of the relative position of selected radio button.

Compatibility: Available but undocumented in CL53.

See also: RadioGroup:Value

 OBJ 217

oRadBut:Destroy() ─> NIL

Destroys the RadioButton object and restores the previous screen content. This

method can be used when a RadioButton object is no longer needed.

oRadBut:Destroy() de-instantiates the RadioButton object and allows you to close

and free any resources that were opened or created by the object, without waiting for

the garbage collector. This method calls internally oRadBut:Axit() which is the

equivalence for :Destroy()

Compatibility: Available also in VO

See also: RadioButton{} instantiation

oRadBut:Display() ─> self

Show the radio button, it frame and caption on the screen. The radio button widget

(control) remains invisible until you invoke :Display() or oRadBut:Show(). This allows

the program to set up the control correctly (with the correct size, position, and any

other parameters), while avoiding the "visual noise" of changing controls.

oRadBut:Display() uses the values of the following instance variables to correctly

show the list in its current context, in addition to providing maximum flexibility in the

manner a radio button appears on the screen: Buffer, Caption, CapCol, CapRow, Col,

ColorSpec, HasFocus, Row, and Style.

Compatibility: Available also in CL53

See also: oRadBut:Show()

oRadBut:Enabled ─> lOk ACCESS

oRadBut:Enabled := lOk ASSIGN

<lOk> contains TRUE (.T.) if the radio button is selectable by user, and FALSE (.F)

if it is not. The default is TRUE.

Compatibility: Available also in FS5 only

See also: oRadBut:ColorSpec

oRadBut:Fblock ─> bBlock ACCESS

oRadBut:Fblock := bBlock ASSIGN

<bBlock> is a code block or NIL. The code block callback, when present, is evaluated

each time the RadioButton object receives or loses input focus. The code block

receives two arguments: the object self and the current :HasFocus status, which

indicates whether the radio button is receiving (.T.) or losing (.F.) input focus. In

GUI, the object receives focus every times the user clicks (or activates) the radio

button widget and looses focus when other widget is selected.

OBJ 218

Compatibility: Available also in CL53, but Clipper does not pass any arguments to

the code block, and hence cannot use generalized but object specific code blocks

which needs to check the current oRadBut:HasFocus status by itself.

See also: oRadBut:HasFocus, :SetFocus(), :KillFocus(), :Sblock

oRadBut:HasFocus ─> lFocus ACCESS

<lFocus> is a logical value indicating whether the object has input focus (TRUE) or

not. In GUI, the object receives focus every times the user clicks (or activates)

the widget and looses the focus when other widget is selected.

Compatibility: Available also in CL53

See also: oRadBut:KillFocus, :SetFocus(), :Fblock

oRadBut:Height ─> nRow ACCESS

oRadBut:Height := nRow ASSIGN

oRadBut:Height ([nRow], [lPixel]) ─> nRow

<nCol> is a numeric value that indicates the height of the radio button. With Access

and assign, the value is either in coordinates or pixels according to the current

SET PIXEL status.

<lPixel> is optional value indicating if the passed and returned value is in coordinates

or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are in

coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Available also in FS5, apply for GUI mode only

oRadBut:HitTest(nMouseRow, nMouseCol, [lPixel]) ─> nStatus

Determines if the mouse cursor is within the region of the screen that the radio button

occupies.

<nRow> Numeric value representing the current or tested screen row position of the

mouse cursor.

<nCol> Numeric value representing the current or tested screen row position of the

mouse cursor.

<lPixel> If specified TRUE, the mouse coordinates are assumed in pixel. If FALSE,

the mouse parameters are assumed in current row/col coordinates. If this

parameter is not specified (i.e. NIL), the kind of passed mouse coordinates is

determined from the current SET PIXEL setting.

<nStatus> Returned numeric value indicating the relationship of the mouse cursor

with the radio button. The constants are specified in button.fh header file.

 OBJ 219

Value Constant Description

0 HTNOWHERE The mouse is not located in the button region

-1025 HTCAPTION The mouse cursor is on the button's caption

-2049 HTCLIENT The mouse cursor is on the radio button

Compatibility: Available also in CL53

See also: Mrow(), Mcol()

oRadBut:Init([par1]...[par5]) ─> self

This is an internal method invoked automatically at instantiation of the RadioButton

object. It is not intended to be called by the application.

Compatibility: Available also in VO

See also: RadioButton{} instantiation

oRadBut:IsAccel(nKey) ─> lOk

Determines whether a key press should be interpreted as a user request to select a

radio button. Returns a logical value <lOk> that indicates whether the value specified

by <nKey> should be treated as a hot key. A value of true (.T.) indicates that the key

should be treated as a hot key; otherwise, a value of false (.F.) indicates that it should

not. This is an internal method invoked automatically at instantiation of the

RadioButton object. It is not intended to be called by the application.

Compatibility: Available also in CL53

See also: oRadBut:Caption

oRadBut:KillFocus() ─> self

Take input focus away from a RadioButton object. Upon receiving this message, the

RadioButton object redisplays itself and, if present, evaluates the code block

specified by :Fblock. This message is meaningful only when the RadioButton object

has input focus.

Compatibility: Available also in CL53. In Clipper

See also: oRadBut:HasFocus, :SetFocus(), :Fblock

oRadBut:Message ─> cText ACCESS

oRadBut:Message := cText ASSIGN

<cText> is a character string displayed in the windows status bar (GUI), or in the

screen line specified by SET MESSAGE (in terminal mode).

Compatibility: Available also in FS5 only

See also: oRadBut:ToolTip(), SET MESSAGE, oApplic:StatusMessage()

OBJ 220

oRadBut:Pressed ─> lOk ACCESS

oRadBut:Pressed := lOk ASSIGN

<lOk> contains TRUE (.T.) if the radio button is in the selected (ON) state, and

FALSE (.F) if it is in the unselected state (OFF). Equivalent to oRadBut:Buffer

and oRadBut:Pressed

Compatibility: Available also in VO

See also: oRadBut:Buffer, oRadBut:Value

oRadBut:Row ─> nRow ACCESS

oRadBut:Row := nRow ASSIGN

oRadBut:Row([nRow], [lPixel]) ─> nRow

<nRow> is a numeric value that indicates the screen row where the radio button is

displayed. With Access/assign, the value is either in coordinates or pixels

according to the current SET PIXEL status.

<lPixel> is optional value indicating if the set/get value is in coordinates or pixels. If

true(.T.), the row data are in pixel; if false (.F.), data are in coordinates, otherwise

the current SET PIXEL status is used.

With terminal i/o, the <nRow> value specifies the column where the three characters

of radio button (*) display.

In GUI i/o mode, the radio button is displayed as a widget (control) and <nRow > is

the topmost widget coordinate when the row is specified in pixel. If the <nRow > is

given in coordinates, the widget position is automatically adapted, to ensure the same

look and feel to an application running in textual mode, and to display the widget at

approx. the same screen position. The topmost widget position is then calculated

from the given <nRow> coordinate minus the current line height plus a value taken

from the global array elements _aGlobSetting[GSET_G_N_RADBUT_ROW] and

_aGlobSetting [GSET_G_N_RADBUT_HEIGHT] which is either positive or negative

number of pixels and are user modifiable.

Compatibility: Access/assign is available in CL53.

See also: oRadBut:Col, RadioButton{} instantiation

oRadBut:Sblock ─> bBlock ACCESS

oRadBut:Sblock := bBlock ASSIGN

<bBlock> is an optional code block or NIL. The code block callback, when present,

is evaluated each time the RadioButton object's state changes. The name

"Sblock" refers to state block. The code block receives two arguments: 1) the

object self, and 2) the select status, i.e. the content of oRadBut:Buffer.

 OBJ 221

Compatibility: Available also in CL53, but Clipper does not pass any arguments to

the code block; it hence cannot use generalized but object specific code blocks which

must extract the required values from the known object by itself.

See also: oRadBut:Buffer, :Fblock

oRadBut:Select([lOnOff]) ─> lOnOff

<lOnOff> is a logical value that indicates whether the radio button should be selected

or not. Set to true (.T.) to select, or false (.F.) to deselect the button. If omitted,

the radio button state will toggle to its opposing state. Considered only if the

button has input focus, or when the radio button is a member of a RadioGroup

object that has input focus.

The radio button state is typically changed when the space bar is pressed or the

mouse's left button is pressed when its cursor is within the radio button's region of

the screen. FlagShip's default handler used in oRadioGroup:Show() also accepts

+,T,t,Y,y keys to set the status ON, and -,F,f,N,n keys to set the radio button

status OFF, and space or "x" key to toggle the status.

Compatibility: Available also in CL53

See also: oRadBut:Buffer

oRadBut:SetFocus() ─> self

Set input focus to a RadioButton object. Upon receiving this message, the

RadioButton object redisplays itself and, if present, evaluates the code block

specified by :Fblock. This message is meaningful only when the RadioButton object

does not have input focus. In GUI, the object receives focus also every times the user

clicks (or activates) the widget.

Compatibility: Available also in CL53.

See also: oRadBut:HasFocus, :KillFocus(), :Fblock, :HotBox

oRadBut:Show() ─> self

Provided for compatibility to VO, performs the same action as :Display()

Compatibility: Available also in VO

See also: oRadBut:Display(), oRadBut:Handler

oRadBut:Style ─> cStyle ACCESS

oRadBut:Style := cStyle ASSIGN

<cStyle> is a character string that indicates the delimiter characters that are used by

the radio button's Display() and Show() method. The string must contain four

OBJ 222

characters. The first is the left delimiter, the 2nd is the "selected" indicator, the

3rd is the "unselected" indicator, and the 4th character is the right delimiter. The

default style is pre-defined in the global array element _aGlobSetting

[GSET_T_C_RADBUT_STYLE] containing "(*)" at start-up; it may be re-defined by

a simple assignment later. May be also set or redefined by

RadioGroup:SetStyle().

Compatibility: Considered in terminal mode only, ignored in GUI. Available also in

CL53.

See also: RadioGroup:SetStyle(), oRadBut:ColdBox, :HotBox, :Display()

oRadBut:ToolTip ─> cText ACCESS

oRadBut:ToolTip := cText ASSIGN

<cText> is a string representing the displayed tool tip, i.e. a short info message which

pop up's when the mouse is over the radio button.

Compatibility: Available in FS5 only, apply for GUI, ignored otherwise

See also: oRadBut:Message

oRadBut:TypeOut ─> lVal ACCESS

<lVal> is a value always containing false (.F.). It is not used by the RadioButton object

and is only provided for compatibility with the other GUI control classes.

Compatibility: Available also in FS5

oRadBut:Value ─> exp ACCESS

oRadBut:Value := exp ASSIGN

<exp> contains TRUE (.T.) if the radio button is in the selected (ON) state, and

FALSE (.F) if it is in the unselected state (OFF). Equivalent to oRadBut:Buffer

Compatibility: Available also in VO

See also: oRadBut:Buffer, oRadBut:Pressed

oRadBut:Width ─> nCol ACCESS

oRadBut:Width := nCol ASSIGN

oRadBut:Width ([nCol], [lPixel]) ? nCol

<nCol> is a numeric value that indicates the width of the radio button. With Access

and assign, the value is either in coordinates or pixels according to the current

SET PIXEL status.

<lPixel> is optional value indicating if the passed and returned value is in coordinates

or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are in

coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Available also in FS5, apply for GUI mode only

 OBJ 223

RadioGroup Class

Creates radio button group which provides a convenient mechanism for manipulating radio

buttons, added in the radio group via AddItem() or InsItem() method.

Radio buttons are typically presented in related groups (i.e. using this RadioGroup Class) and

provide mutually exclusive responses to a condition where only one choice is appropriate.

Only one radio button can be ON in each radio button group. When a different button is

pressed, the previously selected button is turned off.

Example 1: This example creates two radio buttons, one with a caption of "Male" and the

other "Female" and groups them together using the RadioGroup class and uses the standard

input handler via :Show()

 oRadio1 := RadioButton{10,5,"Male"}
 oRadio2 := RadioButton(11,5)
 oRadio2:Caption := "Female"
 oRgroup := RadioGroup(9,3,12,15)
 oRgroup:AddItem(oRadio1)
 oRgroup:AddItem(oRadio2)
 oRgroup:ColorSpec := "W+/B,GR+/B,G+/B,R+/B,GR+/B,R+/B,R+/B"
 oRgroup:Show() // process automatically
 setpos(12,0)
 ? "you are", if(oRadio1:Buffer, "male", ;
 if(oRadio2:Buffer, "female", "of unknown gender"))
 ? "selected was radio button#" + ltrim(oRgroup:Value)

Example 2: This is very similar to above example but handles the input by its own and uses

Radio button :Data property:

 #include "inkey.fh"
 #include "box.fh"
 oRadio1 := RadioButton{10,5,"Male","Mr."}
 oRadio2 := RadioButton(11,5)
 oRadio2:Caption := "Female"
 oRadio2:Data := "Mrs."
 oRgroup := RadioGroup(9,3,12,15)
 oRgroup:AddItem(oRadio1)
 oRgroup:AddItem(oRadio2)
 oRgroup:ColdBox := B_PLAIN
 oRgroup:HotBox := B_PLAIN

OBJ 224

 // handle this radio group manually similarly to Clipper
 SET WRAP ON // wrap from last to first selection
 oRgroup:Display()
 oRgroup:SetFocus()
 oRgroup:FirstItem():Select(.T.) // select first item
 while .T.
 key := inkey()
 do case
 case key == K_DOWN
 oRgroup:NextItem()
 case key == K_UP
 oRgroup:PrevItem()
 case key == K_ESCAPE
 exit
 case key == K_CTRL_UP .or. key == K_HOME
 oRgroup:FirstItem()
 case key == K_CTRL_DOWN .or. key == K_END
 oRgroup:LastItem()
 case chr(key) $ " X"
 oRgroup:Select() // toggle on/off
 exit
 case chr(key) $ "+yYtT" .or. key == K_ENTER
 oRgroup:Select(NIL, .T.)
 exit
 case chr(key) $ "-nNfF"
 oRgroup:Select(.F.)
 exit
 endcase
 enddo
 oRgroup:KillFocus()
 cSalutation := oRgroup:Value() // Mr. or Mrs.

Example 3: See additional examples, e.g. the use via @..GET / READ in the RadioButton

class description.

As with other GUI classes in FlagShip, the general RadioGroup class is internally inherited by

three different sub-classes: _gRadioGroup for GUI based application, _tRadioGroup for

terminal/text based mode, and _bRadioGroup for basic i/o mode, all defined in the boxclass.fh

header file. The proper class, corresponding to the used i/o mode, is set either at compile time

with the compiler switch "-io=g|t|b", or latest at run-time depending on the currently used

environment.

Note: in the basic i/o mode, only a rough radio button functionality is simulated by the

sequential in/output.

 OBJ 225

RadioGroup Class Index

Class RadioGroup

Inherits from: - (none)

Inherited by: - (none)

Class prototype: boxclass.fh

Defines: button.fh, set.fh

AddItem() METHOD Add new RadioButton item at the end of radio group list

Bottom ACC/ASS Screen bottom row of the radio group frame

Bottom() METHOD Screen bottom row of the radio group frame

Buffer ACC Position of the selected radio button in the group list

Button() METHOD Get the specified radio button object

CapCol ACC/ASS Screen column of the radio group caption

CapCol() METHOD Screen column of the radio group caption

CapRow ACC/ASS Screen row of the radio group caption

CapRow() METHOD Screen row of the radio group caption

Caption ACC/ASS String that describes the radio group caption

Cargo ACC/ASS A user value of any type

ClassName() METHOD For compatibility to Clipper's getsys.prg only

ColdBox ACC/ASS Frame of the radio group without focus

ColorSpec ACC/ASS Color attributes

CurrItemNo ACC/ASS Position of the selected radio button in the group list

Destroy() METHOD Destroys the RadioGroup object

DelItem() METHOD Remove specified item from the radio group list

Display() METHOD Show radio buttons, frame and caption on the screen

Exec() METHOD Process user input, same as :Show()

Fblock ACC/ASS Code block evaluated at receiving/losing focus

FirstItem() METHOD Selects the first selectable item in the group list

FrameStyle ACC/ASS Set kind of GUI frame around the radio group

GetAccel() METHOD Get the item position corresponding to the given key

GetItem() METHOD Get the specified radio button object

Handler ACC/ASS User defined keyboard handler

HasFocus ACC Indicates whether the object has input focus

Height ACC/ASS The height of the radio group widget

Height() METHOD The height of the radio group widget

HitTest() METHOD Determines if the mouse cursor is within the widget

HotBox ACC/ASS Frame of the radio group with focus

InsItem() METHOD Insert new RadioButton item at specified position

ItemCount ACC Total number of radio buttons in the RadioGroup list

KillFocus() METHOD Take input focus away from a CheckBox object

LastItem() METHOD Selects the last selectable item in the group list

Left ACC/ASS Leftmost screen column of the radio group frame

Left() METHOD Leftmost screen column of the radio group frame

Message ACC/ASS String displayed in the windows status bar

Modified ACC/ASS Indicates that the user clicks on a radio button

NextItem() METHOD Selects the next selectable item in the group list

OBJ 226

PrevItem() METHOD Selects the previous selectable item in the group list

Right ACC/ASS Rightmost screen column of the radio group frame

Right() METHOD Rightmost screen column of the radio group frame

Sblock ACC/ASS Code block evaluated at user selection

Select() METHOD Select and set specific radio button on/off

SetColor() METHOD Set uniform color attributes for all radio buttons

SetFocus() METHOD Set input focus to a radio button object

SetStyle() METHOD Set uniform style attributes for all radio buttons

Show() METHOD Displays the widget and invoke the keyboard handler

ToolTip ACC/ASS Short pop-up info message

Top ACC/ASS Screen topmost row of the radio group frame

Top() METHOD Screen topmost row of the radio group frame

TypeOut ACC/ASS Indicates whether the group contains selectable buttons

Value ACC/ASS Relative position of the button toggled ON

Width ACC/ASS The width of the radio group widget

Width() METHOD The width of the radio group widget

 OBJ 227

RadioGroup Class Instantiation

oRadGrp := [_g|_t|_b]RadioGroup {[nTop],[nLeft],[nBott],[nRight],[lPix]} [1]

oRadGrp := [_g|_t|_b]RadioGroupNew([nTop],[nLeft],[nBott],[nRight],[lPix]) [2]

oRadGrp := RadioGroup ([nTop], [nLeft], [nBott], [nRight], [lPix]) [3]

oRadGrp := RadioGroup { [oOwn], [nId], [oPoint], [oDim], [cCapt] } [4]

Any of the above syntax instantiate new radio group object. Syntax [1] and [2] are

standard FlagShip and should be preferred. Syntax [3] is supported for compatibility

to Clipper 5.3, and [4] is supported for compatibility to VO.

The widget (control) remains invisible until you invoke oRadGrp:Show() or

oRadGrp:Display(). This allows the program to set up the control correctly (with the

correct size, position, and any other parameters), while avoiding the "visual noise" of

changing controls.

<nTop> topmost row where the frame of radio group display in coordinates or pixel,

optional. If not specified, the coordinates are calculated automatically from radio

group items at the first oRadGrp:Display(). See additional details in the

oRadGrp:Top description.

<nLeft> leftmost column where the frame of radio group display in coordinates or

pixel, optional. If not specified, the coordinates are calculated automatically from

radio group items at the first oRadGrp: Display(). See additional details in the

oRadGrp:Left description.

<nBott> bottom row where the frame of radio group display in coordinates or pixel,

optional. If not specified, the coordinates are calculated automatically from radio

group items at the first oRadGrp:Display(). See additional details in the

oRadGrp:Bottom description.

<nRight> rightmost column where the frame of radio group display in coordinates or

pixel, optional. If not specified, the coordinates are calculated automatically from

radio group items at the first oRadGrp: Display(). See additional details in the

oRadGrp:Right description.

<lPix> if true(.T.), the row and column data are in pixel; if false (.F.), data are in

row/col coordinates, otherwise the current SET PIXEL status is used.

<oOwn> owner object of the radio button, optional. Default is the oApplic object.

<nId> an unique ID between 1 and 8000 of the radio button, optional. If not specified,

internal ID is used.

<oPoint> the origin of the radio button, in canvas coordinates

<oDim> the dimension of the radio button, in canvas coordinates

OBJ 228

<cCapt> caption text, optional. The position of the text is specified by

oRadGrp:CapRow and oRadGrp:CapCol

Compatibility: Available also in CL53 (syntax 3) and VO (syntax 4). Neither Clipper

nor VO calculates the frame coordinates automatically but requires the input.

See also: oRadGrp:Destroy()

 OBJ 229

RadioGroup Class Properties

oRadGrp:AddItem(oRadButt) ─> self

Add new RadioButton item to radio group list

<oRadButt> is the radio button object to be added at the and of the radio group list.

Compatibility: Available also in CL53 and VO.

See also: oRadGrp:InsItem(),oRadGrp:DelItem()

oRadGrp:Bottom ─> nRow ACCESS

oRadGrp:Bottom := nRow ASSIGN

oRadGrp:Bottom ([nRow], [lPixel]) ─> nRow

<nRow> is a numeric value that indicates the screen bottom row where the cold and

hot box frame of the radio group is displayed. The input and output value is either

in coordinates or in pixels, depending on the current SET PIXEL setting. The

default coordinates are specified at radio group instantiation or are calculated

automatically from radio group items at the first oRadGrp:Display() or :Show()

invocation.

<lPixel> is optional value indicating if the set/get value is in coordinates or pixels. If

true(.T.), the row data are in pixel; if false (.F.), data are in coordinates, otherwise

the current SET PIXEL status is used.

With terminal i/o, the <nRow> value specifies the row where the frame of

oRadGrp:ColdBox and :HotBox is displayed.

With GUI i/o, the radio group is displayed as a widget (control) and <nRow > is the

bottom widget coordinate. To ensure the same look and feel to an application running

in textual mode, and to display the widget at approx. the same screen position, the

given <nRow> coordinate is automatically adapted by adding a pixel value taken from

the global array element _aGlobSetting[GSET_G_N_RADGRP_BOT] which may be

positive or negative. Additional adjustment is possible via oRadGrp:Right and :Height

Compatibility: Available also in CL53 which does not calculate the frame coordinates

automatically but requires the input.

See also: oRadGrp:Top, :Left, :Right

oRadGrp:Buffer ─> nPos ACCESS

<nPos> is a numeric value that indicates the position in the radio group of the

selected radio button. Equivalent to oRadGrp:Value instance w/o data

properties.

Compatibility: Available also in CL53.

See also: oRadGrp:Select()

OBJ 230

oRadGrp:Button([nPos]) ─> oRadioButton

Fully equivalent to oRadGrp:GetItem([nPos]), available for compatibility purpose.

Compatibility: Available also in VO.

See also: oRadGrp:GetItem (), :FirstItem(), :NextItem(), :LastItem(), :ItemCount

oRadGrp:CapCol ─> nCol ACCESS

oRadGrp:CapCol := nCol ASSIGN

oRadGrp:CapCol([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the screen column where the radio group

caption is displayed, the default is 0. The input and output value is either in

coordinates or in pixels, depending on the current SET PIXEL setting.

<lPixel> is optional value indicating if the passed and returned value is in coordinates

or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are in

coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Access/assign is available in CL53.

See also: oRadGrp:CapRow, oRadGrp:Caption

oRadGrp:CapRow ─> nRow ACCESS

oRadGrp:CapRow := nRow ASSIGN

oRadGrp:CapRow([nRow], [lPixel]) := nRow

<nRow> is a numeric value that indicates the screen row where the radio group

caption is displayed, the default is 0. The input and output value is either in

coordinates or in pixels, depending on the current SET PIXEL setting.

<lPixel> is optional value indicating if the set/get value is in coordinates or pixels. If

true(.T.), the row data are in pixel; if false (.F.), data are in coordinates, otherwise

the current SET PIXEL status is used.

Compatibility: Available also in CL53.

See also: oRadGrp:CapCol, oRadGrp:Caption

oRadGrp:Caption ─> cText ACCESS

oRadGrp:Caption := cText ASSIGN

<cText> is a string that describes the radio group caption. When present, the &

character specifies that the character immediately following it in the caption is

the radio group accelerator key. The accelerator key provides a quick and

convenient mechanism for the user to move input focus from one data input

control to a radio group. The user performs the selection by pressing the Alt key

 OBJ 231

in combination with an accelerator key. The case of an accelerator key is

ignored.

Compatibility: Available also in CL53 and VO.

See also: oRadGrp:CapCol, oRadGrp:Caption

oRadGrp:Cargo ─> exp ACCESS

oRadGrp:Cargo := exp ASSIGN

<exp> is a value of any type. The oRadGrp:Cargo slot holds any user- definable data

which can be retrieved later. This property is not used by the RadioGroup object

itself.

Compatibility: Available also in CL53.

oRadGrp:ClassName() ─> cText

For compatibility to Clipper's getsys.prg only. Return fix "RADIOGROUP" regardless

the subclass. In FlagShip, you may also use IsObjClass() which provides you with

more detailed information.

Compatibility: Available but undocumented in CL53

See also: IsObjClass() and IsObjProperty() functions, getsys.prg source

oRadGrp:ColdBox ─> cBox ACCESS

oRadGrp:ColdBox := cBox ASSIGN

<cBox> is an optional string that specifies the characters to use when drawing a box

around the radio group when it does not have input focus. Its default value is pre-

defined in the global array element _aGlobSetting[GSET_T_C_COLDBOX] and is

usually B_SINGLE. The following <cBox> constants are defined in the box.fh file, the

_aGlobSetting[] array constants in set.fh and initio.prg files.

Constant Description

B_SINGLE Single line box

B_DOUBLE Double line box

B_SINGLE_DOUBLE Single line top/bottom, double line sides

B_DOUBLE_SINGLE Double line top/bottom, single line sides

B_PLAIN Plain ASCII characters

Compatibility: Available also in CL53. This property is considered in terminal mode

only and is ignored in GUI mode.

See also: oRadGrp:HotBox,:SetFocus(), :ColorSpec, @..BOX

OBJ 232

oRadGrp:ColorSpec ─> cAttrib ACCESS

oRadGrp:ColorSpec := cAttrib ASSIGN

<cAttrib> is a character string specifying the color attributes that are used by the

Display() and Show() method. The string must contain three color specifiers,

otherwise the rest is unchanged.

Position in Applies To Default value used

<cAttrib> from curr SET COLOR

1 Radio group border Border

2 Radio group caption Standard

3 Radio group caption's key Background

Specifying "-" for foreground or background lets the original color unchanged, which

enables you to change the required color attribute only.

Compatibility: Available also in CL53. This property is considered in terminal mode

only and is ignored in GUI mode.

See also: oRadGrp:HasFocus, :SetColor(), SET COLOR, SET()

oRadGrp:CurrItemNo ─> nPos ACCESS

oRadGrp:CurrItemNo := nPos ASSIGN

<nPos> is a numeric value, between 1 and the :ItemCount, indicating which item is

currently selected and is equivalent to :Buffer. If no item is selected, it is

0.The :CurrItemNo assign is equivalent to :GetItem(nPos).

Compatibility: Available in FS5 only

See also: oRadGrp:Buffer, :GetItem()

oRadGrp:Destroy() ─> NIL

Destroys the RadioGroup object and restores the previous screen content. This

method can be used when a RadioGroup object is no longer needed.

oRadGrp:Destroy() de-instantiates the RadioGroup object and allows you to close

and free any resources that were opened or created by the object, without waiting for

the garbage collector. This method calls internally oRadGrp:Axit() which is the

equivalence for :Destroy()

Compatibility: Available also in VO

See also: RadioGroup{} instantiation

 OBJ 233

oRadGrp:DelItem(nPos) ─> self

<nPos> is a numeric value that indicates the position in the radio group list of the

radio button to be deleted.

Compatibility: Available also in CL53 and VO

See also: oRadGrp:AddItem(), :InsItem(), :ItemCount

oRadGrp:Display() ─> self

Show all the radio buttons available in the group list, the radio group frame and

caption on the screen. If the radio group coordinates were not specified yet, they are

calculated automatically from the radio button list.

Note: the radio group widget (control) remains invisible until you invoke

oRadGrp:Display() or oRadGrp:Show(). This allows the program to set up the control

correctly (with the correct size, position, and any other parameters), while avoiding

the "visual noise" of changing controls.

Compatibility: Available also in CL53, which does not calculate the coordinates

automatically bur requires the input.

See also: oRadGrp:Show(), :Top, :Bottom, :Left, Right

oRadGrp:Exec() ─> self

This method is equivalent to oRadGrp:Show(). It activates either the default or user

specific input handler (specified by :Handler) to process the user entry. See further

details in :Show()

Compatibility: Available in FS5 only.

See also: oRadGrp:Show(), :GetItem(), :NextItem(), :LastItem()

oRadGrp:Fblock ─> bBlock ACCESS

oRadGrp:Fblock := bBlock ASSIGN

<bBlock> is a code block or NIL. The code block callback, when present, is evaluated

each time the RadioGroup object receives or loses input focus. The code block

receives two arguments: the object self and the current :HasFocus status, which

indicates whether the radio button is receiving (.T.) or losing (.F.) input focus. In

GUI, the object receives focus every times the user clicks (or activates) the radio

button widget and looses focus when other widget is selected.

Compatibility: Available also in CL53, but Clipper does not pass any arguments to

the code block, and hence cannot use generalized but object specific code blocks

which needs to check the current oRadGrp:HasFocus status by itself.

See also: oRadGrp:HasFocus, :SetFocus(), :KillFocus(), :Sblock

OBJ 234

oRadGrp:FirstItem() ─> oRadioButton

Selects the first available and selectable item in the group list, considering the

oRadButton:Enabled status. If no selectable items are available, NIL is returned.

Selecting the item does not change the radio button status.

Compatibility: Available in FS5 only.

See also: oRadGrp:GetItem(), :NextItem(), :LastItem(), :ItemCount

oRadGrp:FrameStyle ─> nStyle ACCESS

oRadGrp:FrameStyle := nStyle ASSIGN

Set the frame style of RadioGroup. Assign is considered before first :Display(). The

constants are defined in button.fh

<nStyle> constant Action

BS_GROUPBOX_NONE don't draw frame around the radio group

BS_GROUPBOX_SUNKEN sunken box frame (default in GUI i/o)

BS_GROUPBOX_RAISED raised box frame

BS_GROUPBOX_PLAIN plain box frame (default in Terminal i/o)

oRadGrp:FrameWidth ─> nWidth ACCESS

oRadGrp:FrameWidth := nWidth ASSIGN

Set the line width (in pixel) of RadioGroup frame. Apply for GUI only. The default

width is 1. Assign is considered before first :Display()

oRadGrp:GetAccel (nKey) ─> nPos

<nKey > is a numeric value that indicates the Inkey() value to check.

<nPos> is the returned numeric value in the range 1 to :ItemCount that indicates the

first position in the list of items whose accelerator key matches the <nKey> value.

If a corresponding accelerator is not found, 0 is returned.

Compatibility: Available also in CL53

See also: RadioButton:Caption, oRadGrp:ItemCount

oRadGrp:GetItem([nPos]) ─> oRadioButton

<nPos> is a numeric value in the range 1 to :ItemCount that indicates the position in

the list of the item that is being retrieved. If not specified or is 0 or NIL, the current

radio button object is returned. Selecting the item does not change the radio

button status.

 OBJ 235

<oRadioButton> is the RadioButton object specified by <nPos>, even if the button

is disabled. If no item is available at the specified position, NIL is returned.

Compatibility: Available also inCL53

See also: oRadGrp:Button(), :FirstItem(), :NextItem(), :LastItem(), :ItemCount

oRadGrp:Handler ─> bHandler ACCESS

oRadGrp:Handler := bHandler ASSIGN

<bHandler> is a code block or NIL. The code block, when present, is invoked from

the oRadGrp:Show() method and replaces the default radio button handler

available in the <FlagShip_dir>/system/radiogrouphand.prg source file. The

code block receives one argument, the object self.

Compatibility: Available in FS5 only.

See also: oRadGrp:Show()

oRadGrp:HasFocus ─> lFocus ACCESS

<lFocus> is a logical value indicating whether the radio group object has input focus

(TRUE) or not. In GUI, the object receives focus every times the user clicks (or

activates) the widget and looses the focus when other widget is selected.

Compatibility: Available also in CL53

See also: oRadGrp:KillFocus, :SetFocus(), :Fblock

oRadGrp:Height ─> nRows ACCESS

oRadGrp:Height := nRows ASSIGN

oRadGrp:Height ([nRows], [lPixel]) ─> nRows

<nRows> is a numeric value that indicates the height of the radio group widget

(control) including the frame. With Access and assign, the value is either in

coordinates or pixels according to the current SET PIXEL status. The default

value is determined from oRadGrp:Top and oRadGrp:Bottom. Setting a new

value overwrites oRadGrp:Bottom.

<lPixel> is optional value indicating if the passed and returned value is in coordinates

or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are in

coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Available in FS5 only. Apply for GUI mode and is ignored otherwise

See also: oRadGrp:Width, :Top, :Bottom

OBJ 236

oRadGrp:HitTest(nMouseRow, nMouseCol, [lPixel]) ─> nStatus

Determines if the mouse cursor is within the region of the screen that the radio button

occupies.

<nRow> Numeric value representing the current or tested screen row position of the

mouse cursor.

<nCol> Numeric value representing the current or tested screen column position of

the mouse cursor.

<lPixel> If specified TRUE, the mouse coordinates are assumed in pixel. If FALSE,

the mouse parameters are assumed in current row/col coordinates. If this

parameter is not specified (i.e. NIL), the kind of passed mouse coordinates is

determined from the current SET PIXEL setting.

<nStatus> Returned numeric value indicating the relationship of the mouse cursor

with the radio button. The constants are specified in button.fh header file.

Value Constant Description: the mouse cursor is...

0 HTNOWHERE not located in the box region

-1 HTTOPLEFT on the top left corner of the object border

-2 HTTOP on the object top border

-3 HTTOPRIGHT on the top right corner of object border

-4 HTRIGHT on the object right border

-5 HTBOTTOMRIGHT on the bottom right corner of the obj border

-6 HTBOTTOM on the object bottom border

-7 HTBOTTOMLEFT on the bottom left corner of the obj border

-8 HTLEFT on the object left border

-2049 HTCLIENT within the radio group's screen region

Compatibility: Available also in CL53

See also: Mrow(), Mcol()

oRadGrp:HotBox ─> cBox ACCESS

oRadGrp:HotBox := cBox ASSIGN

<cBox> is an optional string that specifies the characters to use when drawing a box

around the radio button when it has input focus. Its default value is pre-defined

in the global array element _aGlobSetting [GSET_T_C_HOTBOX] and is usually

B_DOUBLE. The following <cBox> constants are defined in the box.fh file, the

_aGlobSetting[] array constants in set.fh and initio.prg files.

Constant Description

B_SINGLE Single line box

B_DOUBLE Double line box

B_SINGLE_DOUBLE Single line top/bottom, double line sides

B_DOUBLE_SINGLE Double line top/bottom, single line sides

B_PLAIN Plain ASCII characters

 OBJ 237

Compatibility: Available also in CL53

See also: oRadGrp:ColdBox, :HasFocus, :SetFocus(), @..BOX

oRadGrp:Init([par1]...[par5]) ─> self

This is an internal method invoked automatically at instantiation of the RadioButton

object. It is not intended to be called by the application.

Compatibility: Available also in VO

See also: RadioGroup{} instantiation

oRadGrp:InsItem(nPos, oRadButt) ─> self

<nPos> is a numeric value in the range of 1 to :ItemCount that indicates the position

in the list at which the new item is inserted. Values less or equal to zero are

treated as 1, values greater than :ItemCount performs the same action

as :AddItem()

<oRadButt> is the radio button object to be inserted.

Compatibility: Available also in CL53 and VO.

See also: oRadGrp:AddItem(), :DelItem(), :ItemCount

oRadGrp:ItemCount ─> nCount ACCESS

<nCount> is a numeric value that indicates the total number of radio buttons in the

RadioGroup list.

Compatibility: Available also in CL53

See also: oRadGrp:AddItem(), :InsItem()

oRadGrp:KillFocus() ─> self

Take input focus away from a RadioGroup object. Upon receiving this message, the

RadioGroup object redisplays itself with the :ColdBox frame and, if present, evaluates

the code block specified by :Fblock. This message is meaningful only when the

RadioGroup object has input focus.

Compatibility: Available also in CL53

See also: oRadGrp:HasFocus, :SetFocus(), :Fblock

OBJ 238

oRadGrp:LastItem() ─> oRadioButton

Selects the last available and selectable item in the group list, considering the

oRadButton:Enabled status. If no selectable items are available, NIL is returned.

Selecting the item does not change the radio button status.

Compatibility: Available in FS5 only.

See also: oRadGrp:GetItem(), :FirstItem(), :NextItem(), :ItemCount

oRadGrp:Left ─> nCol ACCESS

oRadGrp:Left := nCol ASSIGN

oRadGrp:Left([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the leftmost screen column where the radio

group frame is displayed. With Access/assign, the value is either in coordinates

or pixels according to the current SET PIXEL status. The default is taken from

object instantiation and, if not specified, the coordinates are calculated

automatically from radio group items at the first oRadGrp:Display() or :Show()

invocation.

<lPixel> is optional value indicating if the passed and returned value is in coordinates

or pixels. If true (.T.), the column data are in pixel; if false (.F.), data are in

coordinates, otherwise the current SET PIXEL status is used.

With terminal i/o, the <nCol> value specifies the column where the frame of

oRadGrp:ColdBox and :HotBox is displayed.

With GUI i/o, the radio group is displayed as a widget (control) and <nCol > is the

leftmost widget coordinate. To ensure the same look and feel to an application

running in textual mode, and to display the widget at approx. the same screen

position, the given <nCol> coordinate is automatically adapted by adding a pixel

value taken from the global array element _aGlobSetting[GSET_G_N_RADGRP_LEFT]

which may be positive or negative. Additional adjustment is possible via

oRadGrp:Right and :Width

Compatibility: Access/assign is available in CL53.

See also: oRadGrp:Right, :Width, RadioGroup{} instantiation

oRadGrp:Message ─> cText ACCESS

oRadGrp:Message := cText ASSIGN

<cText> is a character string displayed in the windows status bar (GUI), or in the

screen line specified by SET MESSAGE (in terminal mode). Apply only if the

current radio button has not own :Message which is preferred otherwise.

Compatibility: Available also in CL53.

See also: oRadGrp:Tooltip(), SET MESSAGE, RadioButton:Message

 OBJ 239

oRadGrp:Modified ─> lOk ACCESS

oRadGrp:Modified := lOk ASSIGN

<lOk> is a logical value that is set to TRUE when the user clicks on a radio button,

and reset to FALSE when the mouse button is released.

Compatibility: Available also in VO. Apply in GUI mode only.

oRadGrp:NextItem() ─> oRadioButton

Selects the next available and selectable item in the group list, considering the

oRadButton:Enabled status. If there are no further selectable items

available, :LastItem() is executed with SET WRAP OFF and :FirstItem() with SET WRAP

ON. If no selectable items are available, NIL is returned. Selecting the item does not

change the radio button status.

Compatibility: Available also in CL53

See also:oRadGrp:GetItem(), :FirstItem(), :PrevItem(), :LastItem(), :ItemCount

oRadGrp:PrevItem() ─> oRadioButton

Selects the previous available and selectable item in the group list, considering the

oRadButton:Enabled status. If there are no previous selectable items

available, :FirstItem() is executed with SET WRAP OFF and :LastItem() with SET WRAP

ON. If no selectable items are available, NIL is returned. Selecting the item does not

change the radio button status.

Compatibility: Available also in CL53

See also: oRadGrp:GetItem(), :FirstItem(), :Next Item(), :LastItem(), :ItemCount

oRadGrp:Right ─> nCol ACCESS

oRadGrp:Right := nCol ASSIGN

oRadGrp:Right([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the rightmost screen column where the radio

group frame is displayed. With Access/assign, the value is either in coordinates

or pixels according to the current SET PIXEL status. The default is taken from

object instantiation and, if not specified, the coordinates are calculated

automatically from radio group items at the first oRadGrp:Display() or :Show()

invocation.

<lPixel> is optional value indicating if the passed and returned value is in coordinates

or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are in

coordinates, otherwise the current SET PIXEL status is used.

OBJ 240

With terminal i/o, the <nCol> value specifies the column where the frame of

oRadGrp:ColdBox and :HotBox is displayed.

With GUI i/o, the radio group is displayed as a widget (control) and <nCol> is the

rightmost widget coordinate. To ensure the same look and feel to an application

running in textual mode, and to display the widget at approx. the same screen

position, the given <nCol> coordinate is automatically adapted by adding a pixel

value taken from the global array element _aGlobSetting[GSET_G_N_RADGRP_RIGH]

which may be positive or negative. Additional adjustment is possible via

oRadGrp:Left and :Width

Compatibility: Available also in CL53 which does not calculate the frame coordinates

automatically but requires the input.

See also: oRadGrp:Left, :Width, RadioGroup{} instantiation

oRadGrp:Sblock ─> bBlock ACCESS

oRadGrp:Sblock := bBlock ASSIGN

<bBlock> is an optional code block or NIL. The code block callback, when present,

is evaluated each time the RadioGroup selection changes. The name "Sblock"

refers to state block. The code block receives two arguments: 1) the object self,

and 2) the current item number, i.e. the content of oRadGrp:Buffer.

Compatibility: Available also in CL53, but undocumented and w/o passing any

arguments to the code block.

See also: oRadGrp:Buffer, :Fblock, :Select(), :GetItem(), :FirstItem(), :NextItem()

oRadGrp:Select(nPos, [lOnOff]) ─> lOnOff

<nPos> is a numeric value in the range 1 to :ItemCount that indicates the position in

the list of the item that is being retrieved. No action is taken if <nPos> is out of

range. NIL specifies the current radio button without skipping forward or

backward.

<lOnOff> Set to true (.T.) to check the radio button or false (.F.) to uncheck it. If

omitted or NIL, the radio button state will toggle to its opposing state.

If none, or only one argument is given and it is logical, it is interpreted as (NIL,

<lOnOff>) to ensure the logical compatibility to RadioButton:Select() method.

This method is provided for you convenience and is equivalent to

oRadGrp:GetItem(nPos):Select(lOnOff). It selects the specified radio button item in

the group list, and sets or toggles the radio button state. Hence, the

RadioButton:Enabled status is not checked here as opposite

to :FirstItem(), :NextItem() etc. which should be preferably used instead, to skip to

other radio button, if some items are disabled.

Compatibility: Available also in CL53, which supports 1st argument only

 OBJ 241

See also:

oRadGrp:Buffer, :GetItem(), :FirstItem(), :NextItem(), :PrevItem(), :LastItem(),

RadioButton:Select()

oRadGrp:SetColor([cAttrib]) ─> cColor

This method is used for uniformly setting the color attributes of all the radio buttons

in its group. It accomplishes this by assigning RadioButton:ColorSpec := <cAttrib> to

each of the radio buttons in the group list.

<cColor> is a character string that indicates the color attributes that are used by the

radio button's display() method. If the parameter is not specified or is NIL or

empty, no action is taken and the current setting is returned. The <cAttrib> string

must contain eight color specifiers, otherwise the rest remain unchanged.

Position in Applies To Default value used

<cAttrib> from curr SET COLOR

1 Radio button without input focus, unselected Unselected

2 Radio button without input focus, selected Unselected

3 Radio button with input focus, unselected Enhanced

4 Radio button with input focus, selected Enhanced

5 Radio button's caption Standard

6 Radio button caption's accel. key w/o focus Standard

7 Radio button caption's accel. key with focus Background

8 Radio button and caption, disabled Border

Specifying "-" for foreground or background lets the original color unchanged, which

enables you to change the required color attribute only.

Compatibility: Available also in CL53 with seven attributes and returns self. This

property is considered in terminal mode only and is ignored in GUI mode.

See also: oRadGrp:ColorSpec, :SetStyle(), RadioButton:ColorSpec

oRadGrp:SetFocus() ─> self

Set input focus to a RadioGroup object. Upon receiving this message, the

RadioGroup object redisplays itself with all assigned RadioBox'es, with the :HotBox

frame and, if present, evaluates the code block specified by :Fblock. This message

is meaningful only when the RadioGroup object does not have input focus. In GUI,

the object receives focus also every times the user clicks (or activates) the widget.

Compatibility: Available also in CL53

See also: oRadGrp:HasFocus, :KillFocus(), :Fblock, :HotBox

OBJ 242

oRadGrp:SetStyle ([cStyle]) ─> cStyle

This method is used for uniformly setting the style attributes of all the radio buttons

in its group. It accomplishes this by assigning RadioButton:Style := <cStyle> to each

of the radio buttons in the group list.

<cStyle> is a character string that indicates the delimiter characters that are used by

the radio group Display() and Show() method. If the parameter is not specified

or is NIL or empty, no action is taken and the current setting is returned. The

string must contain four characters. The first is the left delimiter, the 2nd is the

"selected" indicator, the 3rd is the "unselected" indicator, and the 4th character

is the right delimiter. The default style is pre-defined in the global array element

_aGlobSetting[GSET_T_C_RADGRP_STYLE] containing "(*)" at start-up; it may

be re-defined by a simple assignment later.

Compatibility: Available also in CL53. Considered in terminal mode only, ignored in

GUI.

See also: oRadGrp:SetColor(), RadioButton:Style

oRadGrp:Show([lMust]) ─> self

This method activates either the default or user specific input handler. Is displays all

the radio buttons in the list, activates the group focus, waits for user input and sets

the selected radio button status to on/off status accordingly, and on exit, kills the

group focus. The default handler is available in the <FlagShip_dir>/system

/radiogrphand.prg source file and is roughly equivalent to the manual code sequence

given in the second example in front of this class description. If all radio items are

disabled, :Show() exits immediately. Changes of the RadioButton or RadioGroup

properties (possible e.g. via the :Sblock or SET KEY, ON KEY callbacks) are not

considered anymore during the user input in the standard handler.

<lMust> is an optional logical value. True (.T.) indicates that one radio item must be

ON, otherwise an user exit is disabled. If <lMust> is false, NIL or not

given, :Show() accepts also unselected radio group items at the exit via Return

or Escape key.

You may assign your own handler by the oRadGrp:Handler property.

Compatibility: Same named method is available also in VO which returns NIL

See also: oRadGrp:Display(), oRadGrp:Handler

oRadGrp:ToolTip ─> cText ACCESS

oRadGrp:ToolTip := cText ASSIGN

<cText> is a string representing the displayed tool tip, i.e. a short info message which

pop up's when the mouse is over the radio group widget.

Compatibility: Available in FS5 only, apply for GUI, ignored otherwise

See also: oRadGrp:Message

 OBJ 243

oRadGrp:Top ─> nRow ACCESS

oRadGrp:Top := nRow ASSIGN

oRadGrp:Top ([nRow], [lPixel]) ─> nRow

<nRow> is a numeric value that indicates the screen topmost row where the cold and

hot box frame of the radio group is displayed. The input and output value is either

in coordinates or in pixels, depending on the current SET PIXEL setting. The

default coordinates are specified at radio group instantiation or are calculated

automatically from radio group items at the first oRadGrp:Display() or

oRadGrp:Show() invocation.

<lPixel> is optional value indicating if the set/get value is in coordinates or pixels. If

true(.T.), the row data are in pixel; if false (.F.), data are in coordinates, otherwise

the current SET PIXEL status is used.

With terminal i/o, the <nRow> value specifies the row where the frame of

oRadGrp:ColdBox and :HotBox is displayed.

With GUI i/o, the radio group is displayed as a widget (control) and <nRow> is the

top widget coordinate. To ensure the same look and feel to an application running in

textual mode, and to display the widget at approx. the same screen position, the given

<nRow> coordinate is automatically adapted by adding a pixel value taken from the

global array element _aGlobSetting[GSET_G_N_RADGRP_TOP] which may be

positive or negative. Additional adjustment is possible via oRadGrp:Bottom and

oRadGrp:Height

Compatibility: Available also in CL53 which does not calculate the frame coordinates

automatically but requires the input.

See also: oRadGrp:Bottom, :Left, :Right

oRadGrp:TypeOut ─> lVal ACCESS

<lVal> is a logical value that indicates whether the group contains any selectable

buttons. A value of true (.T.) indicates the group contains selectable buttons; a

false (.F.) value indicates that the group is empty or that all items are disabled.

Compatibility: Available also in CL53

oRadGrp:Value ─> exp ACCESS

oRadGrp:Value := exp ASSIGN

<exp> contains the relative position (1 to :ItemCount) of the radio button toggled to

ON. If this radio button contains :Data (i.e. the RadioButton:Data is not NIL), it

value is returned instead.

Compatibility: Available also in CL53 (undocumented) and in VO

See also: oRadGrp:Show(), RadioButton:Data

OBJ 244

oRadGrp:Width ─> nCol ACCESS

oRadGrp:Width := nCol ASSIGN

oRadGrp:Width ([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the width of the radio group. With Access

and assign, the value is either in coordinates or pixels according to the current

SET PIXEL status. The default value is determined from oRadGrp:Left and

oRadGrp:Right. Setting a new value overwrites oRadGrp:Right instance.

<lPixel> is optional value indicating if the passed and returned value is in coordinates

or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are in

coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Available in FS5, apply for GUI mode only

See also: oRadGrp:Height, :Left, :Right

 OBJ 245

TBROWSE Class

A TBROWSE object is a general purpose browsing mechanism for table- oriented data, i.e.

arrays or databases. It provides mechanisms for acquiring, formatting and displaying data.

The output of TBROWSE can be created as with BROWSE() or DBEDIT(), but TBROWSE is the

most powerful. It differs from the standard functions in its degree of exclusive control. On the

other hand, it does not replace DBEDIT() or BROWSE(), since for a simple structure and display

they are significantly easier to handle by the programmer. In fact, DBEDIT() uses TBROWSE,

see its source code in <FlagShip_dir>/system/ dbedit.prg

See also section LNG.7 for general Tbrowse description and it handling.

1. Creating an Object

Any TBROWSE object contains one or more TBCOLUMN objects (see TbColumn class). In

general, the TBROWSE instances and methods control browsing and positioning in the data

table, while TBCOLUMN formatting and data output.

The TBROWSE object is created using the standard function TBROWSENEW() or the

specialized TBROWSEDB() or TBROWSEARR(), both available in source code in

<FlagShip_dir>/system/tbr*.prg. TbrowseNew() creates generic TBROWSE object, while the

TbrowseDb() an object customized and partially initialized for browsing databases, and the

TbrowseArr() for browsing arrays. See <FlagShip_dir>/examples/tbrowse_db.prg and

tbrowse_ar.prg as well as example in Chapter 4 below.

2. Specifying the Columns

Data columns to be displayed from the table are initialized by invoking TBCOLUMNEW() and

assigning the resulting column object to TBROWSE using the tb:ADDCOLUMN() method. See

examples in chapter 4 and TbColumn class. At least one column needs to be assigned.

Data display and browsing, according to the user request, is controlled by the source code

using a loop. In the loop body, the key-press is checked and the corresponding action is

performed calling a TBROWSE method. Alternatively, you may use FlagShip's pre-defined

OBJ 246

handler (available in the library but also in source code for an easy customizing) assigned by

the :Handler property and used by the :EXEC () method.

3. Stabilizing the Display

To permit greater control over the browsing system, TBROWSE allows to move the data pointer

asynchronously (in the background), with respect to the currently visible screen. This may

visually speed up the preparation of displayed data. This asynchronous process is called

stabilization.

Every time a movement in the data table is requested, the system becomes "unstable".

TBROWSE does not display the data immediately but waits until the object is stabilized with the

tb:STABILIZE() method. When this message is received, the browse displays one data record.

When data movement and data display is finished, the TBROWSE system becomes "stable". If

any user key is pressed in the meantime, the stabilize and/or output process may be

interrupted for the next action required. Otherwise, the stabilizing method is repeated until the

whole screen (region) is displayed and the tb:STABILIZE() method or the tb:STABLE instance

returns TRUE. The usual method is

 WHILE .T.
 WHILE !mybrow:STABILIZE() // wait for data display,
 IF NEXTKEY() != 0 // optional:
 EXIT // manage async.input
 ENDIF
 ENDDO

 key := INKEY(0) // process key pressed
 IF key == K_ESC
 EXIT
 ELSEIF key == // process movement
 ENDIF // see chapter 5
 ENDDO

Using the tb:FORCESTABLE() method instead of tb:STABILIZE() will display all data belonging

on the screen, which avoids invoking the stabilization several times.

 WHILE .T.
 mybrow:FORCESTABLE() // wait for data display,
 key := INKEY(0) // process key pressed
 IF key == K_ESC
 EXIT
 ELSEIF key == // process movement
 ENDIF
 ENDDO

 OBJ 247

4. Data Movement

TBROWSE manages any data in table form, such as arrays and databases. Data retrieval and

file or array positioning are performed via user-supplied code blocks, allowing a high degree

of flexibility and interaction between the browsing mechanism and programming.

There are three instance variables containing a code block, which handle data repositioning:

tb:SKIPBLOCK to move one record (or row) forward or backward, tb:GOTOPBLOCK and

tb:GOBOTTOMBLOCK to reach the first or last data record. The :SKIPBLOCK is

mandatory, :GOBOTTOM and :GOTOP optional but highly recommended. An example to move

array data (see also example in TBROWSENEW() and in <FlagShip_dir>/examples/

tbrowse_db.prg or tbrowse_ar.prg):

 *** test.prg
 myname := {"one","two","three"}
 mydata := {{1, 2, 3}, {"aa","bb","cc"}, {11,12,13}}
 browsearr (mydata, myname)

 #define KNOWN_ARR_SIZE

 FUNCTION browsearr (arr, names) // multi-dim. data
 LOCAL mybrow := TBROWSENEW (10,10, 17,40) // create object
 PRIVATE element := 1 // current element
 PRIVATE arrdata := arr

 mybrow:GOTOPBLOCK := {|| element := 1 }
 mybrow:GOBOTTOMBLOCK := {|| element:= LEN(arrdata) }
 mybrow:SKIPBLOCK := {|how,obj| skipper (arrdata, @element, how) }

 mybrow:COLSEP := " " + CHR(179) + " " // or " : "
 mybrow:HEADSEP := "Ä┼Ä" // or "-+-"
 #ifdef KNOWN_ARR_SIZE
 mybrow:ADDCOLUMN (TBCOLUMNNEW (names[1], {|| arrdata[1,element] }))
 mybrow:ADDCOLUMN (TBCOLUMNNEW (names[2], {|| arrdata[2,element] }))
 mybrow:ADDCOLUMN (TBCOLUMNNEW (names[3], {|write| IF (write==NIL, ;
 arrdata[3,element], arrdata[3,element] := write) }))
 #else
 FOR ii = 1 TO LEN(names) // variable array size,
 idx = LTRIM(STR(ii)) // 3rd and following
 IF ii < 3 // columns are editable
 mybrow:ADDCOLUMN (TBCOLUMNNEW (names[ii], ;
 {|| arrdata[&idx., element] }))
 ELSE
 mybrow:ADDCOLUMN (TBCOLUMNNEW (names[ii], {|write| ;
 IF(write==NIL, arrdata[&idx., element], ;
 arrdata[&idx., element] := write) }))
 ENDIF
 NEXT
 #endif
 mybrowhandle (mybrow) // see chapter 5
 RETURN

OBJ 248

 FUNCTION skipper (arr, elem, how)
 LOCAL old := elem
 elem += how
 DO CASE
 CASE how > 0 // skip forward
 IF elem > LEN(arr)
 elem = LEN(arr)
 ENDIF
 CASE how < 0 // skip backward
 IF elem < 1
 elem = 1
 ENDIF
 ENDCASE
 RETURN elem - old // elements skipped

To browse a database, either the TBROWSEDB() function which creates all the three skip

blocks automatically, or the similar program sequence may be used:

 FUNCTION browsedbf ()
 LOCAL mybrow
 #ifdef USING_TBROWSEDB
 mybrow := TBROWSEDB (0,0, 7,20) // creates dbf object
 #else
 mybrow := TBROWSENEW (0,0, 7,20) // creates generic object
 mybrow:GOTOPBLOCK := {|| DBGOTOP() }
 mybrow:GOBOTTBLOCK := {|| DBGOBOTTOM() }
 mybrow:SKIPBLOCK := {|how,obj| skipdb (how) }
 #endif

 FOR ii = 1 TO FCOUNT() // see chapter 4
 mybrow:ADDCOLUMN (TBCOLUMNNEW (FIELDNAME(ii), ;
 FIELDBLOCK (FIELDNAME(ii)))
 NEXT

 mybrowhandle (mybrow) // see chapter 5
 RETURN
 #ifndef USING_TBROWSEDB
 FUNCTION skipdb (how) // user supplied fn
 LOCAL countmoved := 0
 DO CASE
 CASE how == 0 // flush only
 DBCOMMIT ()
 CASE how > 0 // skip forward
 WHILE countmoved < how .and. ! EOF()
 SKIP
 IF EOF()
 ?? CHR(7)
 SKIP -1
 ELSE
 countmoved++
 ENDIF
 ENDDO
 CASE how < 0 // skip backward
 WHILE countmoved > how .and. ! BOF()
 SKIP -1
 IF BOF()

 OBJ 249

 ?? CHR(7)
 ELSE
 countmoved--
 ENDIF
 ENDDO
 ENDCASE
 RETURN countmoved // records skipped
 #endif

When searching for the next data (record), by executing the movement method, TBROWSE will

invisibly post it at the next screen row, if available. The data found is displayed during the

stabilization process.

You may invoke several requests for data movement between two user key-presses and then

display the data using tb:FORCESTABLE() or repeating tb:STABILIZE().

When tb:STABILIZE() is invoked, it tries to leave the same row (data item) highlighted as before,

unless the visual movement of the highlight bar was requested.

During operation, a TBROWSE object retrieves data by evaluating the code blocks supplied.

The data is organized into rows and columns and displayed in a specified region of the screen.

The TBROWSE object maintains an internal browse cursor. Its vertical or horizontal movement

on the screen and within the processed data is controlled by the TBROWSE methods, which

usually performs the user keystrokes. A highlight bar marks the current position within the

processed data.

Initially, the browse cursor is placed on the first data item associated with the first column.

OBJ 250

5. Handling a User Request

To comply with the user request to display a special portion of browsed data, the keystroke is

read by e.g. INKEY() function, and the TBROWSE movement for vertical or horizontal display

or the data movement is performed invoking the corresponding TBROWSE method.

For standard use, there are ready-to-use keyboard handlers available, see

tbrowsehand.prg = for TbrowseArr() and array-based Tbrowse, and

tbrowsedbhand.prg = for TbrowseDb() and database-based Tbrowse

in the <FlagShip_dir>/system directory. These handlers are used per default by oTbrowse:

Exec() method. You may define your own handler as well, and either assign it via oTbrowse:

Handler when using oTbrowse:Exec(), or simply invoke your handler directly.

Example for executing the user request (continuing from chapter 4):

 FUNCTION mybrowhandle (mybrow)
 LOCAL key
 WHILE .T.
 WHILE (!mybrow:STABLE) // (re)build screen,
 mybrow:STABILIZE() // wait for stabilizing
 IF NEXTKEY() != 0 // optional:
 EXIT // manage async.input
 ENDIF
 ENDDO

 key := INKEY(0) // get key pressed
 DO CASE
 CASE key = K_LEFT .or. key = K_CTRL_S // cursor left
 mybrow:LEFT() // = column left
 CASE key = K_RIGHT .or. key= K_CTRL_D // cursor right
 mybrow:RIGHT() // = column right
 CASE key = K_UP .or. key = K_CTRL_E // cursor up
 mybrow:UP() // = previous record
 CASE key = K_DOWN .or. key = K_CTRL_X // cursor down
 mybrow:DOWN() // = next record
 CASE key = K_PGUP .or. key = K_CTRL_R // page-up
 mybrow:PAGEUP() // = previous window
 CASE key = K_PGDN .or. key = K_CTRL_C // page-down
 mybrow:PAGEDOWN() // = next window
 CASE key = K_CTRL_PGUP // Ctrl page-up
 mybrow:GOTOP() // = first record
 CASE key = K_CTRL_PGDN // Ctrl page-down
 mybrow:GOBOTTOM() // = last record
 CASE key = K_HOME .or. key = K_CTRL_A // home
 mybrow:HOME() // = first screen column
 CASE key = K_END .or. key = K_CTRL_F // end
 mybrow:HOME() // = last screen column

 CASE key = K_ESC // escape

 OBJ 251

 EXIT // terminates browsing
 CASE key = K_RETURN // return, enter
 myedit (mybrow) // edit cell, see chapt 6
 OTHERWISE
 ?? CHR(7) // invalid key
 ENDCASE
 ENDDO // system is unstable now
 RETURN NIL

Note that TBROWSE actions are handled in the background, e.g. when Pg-Dn and cursor right

keys are pressed twice rapidly in sequence, the TBROWSE system first skips the data two

pages forward, re-arranges the columns and then displays the data reached, if no other key is

pending.

See also the source of <FlagShip_dir>/system/dbedit.prg for an example of the imple-

mentation.

Generally, if using the :Exec() or :Handler property of Tbrowse, you don't need to create own

handler with TbrowseDb() or TbrowseArr(), since a default handler is already available and

assigned. You may re-assign it to your own handler using the :Handler Tbrowse property. The

source code for database and array handler is available in <FlagShip_dir>/system directory.

OBJ 252

6. Editing Data

You may edit the current data cell at user request, using e.g. the standard GET/READ system.

Specify a TBCOLUMN read/write code block to allow the replacement of the data. See the third

block in Chapter 4. Example (continued from Chapter 4 and 5):

 FUNCTION myedit (brow)
 LOCAL data, row := ROW(), col := COL()
 LOCAL sSave, colobj, block, lMouse, getlist := {}
 IF brow:COLPOS < 3
 ?? CHR(7)
 @ 0,0 SAY "The first two columns are not editable"
 SETPOS (row, col)
 RETURN NIL
 ENDIF
 IF .not. brow:STABLE
 @ 0,0 SAY "Let's stabilize first"
 SETPOS (row, col)
 RETURN NIL
 ENDIF
 @ 0,0

 lMouse := brow:EnableMouseClick
 brow:EnableMouseClick := .F. // disable mouse click during edit
 colobj := brow:GETCOLUMN(brow:COLPOS)
 block := colobj:BLOCK
 data := EVAL(block) // Retrieve data using the column block
 sSave := SaveScreen(row,col,row,brow:nRight)
 @ row, col GET data COLOR "W+/BG,W+/BG"
 READ
 RestScreen(row,col,row,brow:nRight,sSave)

 IF LASTKEY() != 27
 EVAL (block, data) // REPLACE if the block is read/write
 brow:RefreshAll() // and ensure the Tbrowse display
 brow:ForceStable() // the changes
 ENDIF
 brow:EnableMouseClick := lMouse // enable mouse click
 SETPOS (row, col)
 RETURN NIL

To disable unintended mouse click on another field during editing, use the

oTbr:EnableMouseClick property, as demonstrated above. When you are using the default

keyboard handler, the editing is already implemented there. You may disallow editing by

oTbrowse:ReadOnly := .T. or by oTbColumn:ReadOnly := .T. for specific column.

Unicode: In GUI mode, FlagShip supports also Unicode (UTF-8 and UTF-16). Since each glyph

is stored in UTF-8 encoding which results in one to four bytes each - usually as chr(128..255),

the database or array field containing glyphs needs to be set correspondingly (e.g. to 30 or

more characters to accept 10 Japanese or Chinese glyphs). To display the Unicode field, the

current or default font must be set to Unicode by SET GUICHARSET FONT_UNICODE or

oApplic:Font:CharSet(FONT_UNICODE). For editing fields with glyphs, SET MULTIBYTE ON is

required.

 OBJ 253

Tbrowse Class Instantiation

TbrowseNew ()

Syntax 1:

obj = TbrowseNew ([expN1], [expN2], [expN3],
[expN4], [expL5], [expL6], [expC7],
[expO8], [expN9])

Syntax 2:

obj = Tbrowse { [expN1], [expN2], [expN3], [expN4],
[expL5], [expL6], [expC7], [expO8],
[expN9] }

Purpose:

Creates a new, generic TBROWSE object, optionally initialized by the arguments

supplied.

Options:

<expN1> is the top screen row where the TBROWSE is displayed. This argument is

equivalent to assigning the obj:NTOP with the same value. The valid range is

0...MAXROW(). The default value is zero.

<expN2> is the leftmost screen column where the TBROWSE is displayed. This

argument is equivalent to assigning the obj:NLEFT with the same value. The

valid range is 0...MAXCOL(). The default value is zero.

<expN3> is the bottom screen row where the TBROWSE is displayed. This argument

is equivalent to assigning the obj:NBOTTOM with the same value. The valid

range is <expN1>...MAXROW(). The default value is MAXROW().

<expN4> is the rightmost screen column where TBROWSE is displayed. This

argument is equivalent to assigning the obj:NRIGHT with the same value. The

valid range is <expN2>...MAXCOL(). The default value is MAXCOL().

<expL5> is the pixel specification. If .T., the coordinates given are assumed in pixel.

If .F., the coordinates are in row/column. If not given or NIL, the current SET

PIXEL is considered.

<expL6> specifies whether the Tbrowse widget is re-sizeable by user or not. Default

is .F. which means the Tbrowse widget is fix. Applies for GUI mode only, ignored

otherwise.

<expC7> is a ToolTip string. Applies for GUI mode only, ignored otherwise.

<expO8> is a Font object. If not specified, the oApplic:Font is used. Applies for GUI

mode, ignored otherwise.

<expN9> specify the row height in pixel, see also tb:RowHeight. If not specified, the

size of one row is used. Applies for GUI mode, ignored otherwise.

OBJ 254

Returns:

<obj> is the newly allocated TBROWSE object, usually assigned to a regular FlagShip

variable or to an array element.

Description:

TBROWSENEW() creates a new, empty TBROWSE object for generic use. To create a

partially predefined TBROWSE object for browsing databases, TBROWSEDB() may be

used instead.

If the optional arguments are supplied, the corresponding instance variables are filled

with these values.

Prior to using the TBROWSE object, at least a skip block (see tb:SKIPBLOCK) and one

or more TBCOLUMNs (see tb:ADDCOLUMN()) must be specified.

Tuning:

In GUI mode, you may adjust the Tbrowse display by assigning: To allow adjustment

of rows/columns, set
 _aGlobSetting[GSET_G_L_TBROW_ADJ] := .T. // default

If above is set .T., you may set values (in pixels) for
 _aGlobSetting[GSET_G_N_TBROW_TOP] := -3 // Tbrowse top row
 _aGlobSetting[GSET_G_N_TBROW_BOT] := 0 // Tbrowse bottom row
 _aGlobSetting[GSET_G_N_TBROW_LEFT] := 0 // Tbrowse left col
 _aGlobSetting[GSET_G_N_TBROW_RIGH] := 0 // Tbrowse right col
 _aGlobSetting[GSET_G_N_TBROW_RHEIGHT] := 0 // Tbrowse row height
 _aGlobSetting[GSET_G_N_TBROW_CWIDTH] := 4 // add TbColumn width

You also may adjust columns by assigning 0 to center, or greater zero for number of

pixels left
 _aGlobSetting[GSET_G_N_TBROW_COLADJ] := 0 // default

The cursor during oTbr:stabilize() is "wait" = -9, but can be changed to 0 if normal

mouse cursor is desirable, or to other values according to SetGuiCursor() values
 _aGlobSetting[GSET_G_N_TBROW_WAIT] := -9 // hour glas

Multi-line headings (splitted by chr(10) or ";") in GUI are enabled by default by
 _aGlobSetting[GSET_G_L_TBROW_MULTIHEAD] := .T. // .F. = single line

which is equivalent to oTbr:HeadStyle(.T.)

To emulate row/page movement by mouse click on the [^] and [v] vertical scrollbar

button in GUI mode, use
 _aGlobSetting[GSET_G_A_TBROW_VSBUTT] := {{1,2,2,2}, ; // [1]
 {2,2,2,2}, ; // [2]
 {2,2,2,2}, ; // [3]
 .T.} // [4]

where the sub-array [1] assigns action for left mouse click, [2] for mid mouse click

and [3] for right mouse click. The four numeric elements are mouse click modifiers:

{plain click, +Shift, +Ctrl, +Alt}. Value of 0 specify no action, 1 = line up/down, 2 =

page up/down. The .T. in element [4] says to emulate Up/Down/PgUp/PgDn key,

while .F. process the movement directly.

 OBJ 255

Example 1:

This example demonstrates many of the TBROWSE facilities. It will browse and sort

a given directory, using different color settings for each column.

 *** test.prg, compile: FlagShip test.prg -na -Mmain
 STATIC elem := 1

 function main() // entry point
 browsedir ("*") // display all

 #include "box.fh"
 #include "inkey.fh"

 FUNCTION browsedir (skeleton)

 LOCAL brow := TBROWSENEW () // create empty TBCOLUMN
 LOCAL ii, sort, column, dir

 dir := DIRECTORY(skeleton)
 IF LEN(dir) = 0
 ? CHR(7) + "No directory entries for '" + skeleton + '"'
 RETURN 0
 ENDIF

 SET COLOR TO "W+/B,N/W"

 brow:NTOP := 5
 brow:NLEFT := 10
 brow:NBOTTOM := MAXROW() -5
 brow:NRIGHT := MAXCOL() -10
 brow:SKIPBLOCK := {|input, obj, temp| temp := elem, ;
 elem := MAX(1, MIN(LEN(dir), ;
 elem + input)), elem - temp }
 * brow:GOTOPBLOCK:= {||elem := 1 } // not used here
 * brow:GOBOTTOMBL:= {||elem := LEN(dir)} // not used here
 brow:COLSEP := " │ "
 brow:HEADSEP:= "Ä┼Ä"
 brow:COLORSPEC := "W/B, W+/B, BG+/W, GR+/B, R+/B, N/W"
 brow:FOOTSEP:= "Ä┴Ä"
 *** Create columns
 browdircolumn (brow, dir) // see chapter 4

 *** draw box around TBROWSE region
 @ brow:NTOP -1, brow:NLEFT -1, brow:NBOTTOM +3, ;
 brow:NRIGHT +1 BOX B_DOUBLE + " " // draw box
 @ brow:NBOTTOM +1, brow:NLEFT TO ;
 brow:NBOTTOM +1, brow:NRIGHT // draw line
 @ brow:NBOTTOM +2, brow:NLEFT SAY " Move: " + ;
 "Cursor or PgUp,PgDn. Sort: select column, press S"

 *** main loop to browse and perform an user action
 WHILE (.T.)
 IF LEN(dir) > brow:ROWCOUNT
 WHILE ! brow:STABILIZE() .and. NEXTKEY() == 0
 ENDDO
 ELSE

OBJ 256

 brow:FORCESTABLE()
 ENDIF
 key := INKEY(0) // get key pressed

 DO CASE
 CASE key = K_LEFT // left
 brow:LEFT()
 CASE key = K_RIGHT // right
 brow:RIGHT()
 CASE key = K_UP // up
 brow:UP()
 CASE key = K_DOWN // down
 brow:DOWN()
 CASE key = K_PGUP // PgUp
 brow:PAGEUP()
 CASE key = K_PGDN // PgDown
 brow:PAGEDOWN()
 CASE key = K_ESC .or. key = K_ENTER // ESC or ENTER
 EXIT
 CASE UPPER(CHR(key)) == "S" // sort on current column
 sort = brow:COLPOS
 ASORT (dir, , , {|x,y| x[sort] <= y[sort] })
 FOR ii = 1 TO 5
 column = brow:GETCOLUMN (ii)
 column:FOOTING := IF (ii==sort, "sorted", "")
 brow:SETCOLUMN (ii, column)
 NEXT
 brow:REFRESHALL()
 OTHERWISE
 ?? CHR(7)
 ENDCASE
 ENDDO
 RETURN elem

 * function browdircolumn (brow, dir) // see TBCOLUMNNEW()
 * :
 * RETURN

Example 2:

See also the <FlagShip_dir>/system/dbedit.prg file for a complete example of the

TBROWSE usage.

Classification:

programming

Class:

TBROWSE class, prototyped in <FlagShip_dir>/include/tbrclass.fh

Compatibility:

Available in FS4, C5 and VO. The alternative syntax 2 and the possibility of inheriting

it into an own subclass is available in FlagShip only. Arguments <expL5> to <expN9>

are new in FS5.

Related:

TBCOLUMN, ACHOICE(), DBEDIT(), MEMOEDIT()

 OBJ 257

TbrowseArr ()

Syntax:

obj = TbrowseArr ([expN1], [expN2], [expN3],
[expN4], [expL5], [expL6], [expC7],
[expO8], [expN9], [expA10])

Purpose:

Creates a new TBROWSE object with predefined array movement blocks, optionally

initialized by the arguments supplied.

Options:

<expN1> is the top screen row where TBROWSE is displayed. This argument is

equivalent to assigning the obj:NTOP with the same value. The valid range is

0...MAXROW(). The default value is zero.

<expN2> is the leftmost screen column where TBROWSE is displayed. This

argument is equivalent to assigning the obj:NLEFT with the same value, the valid

range is 0...MAXCOL(). The default value is zero.

<expN3> is the bottom screen row where TBROWSE is displayed. This argument is

equivalent to assigning the obj:NBOTTOM with the same value. The valid range

is <expN1>...MAXROW(). The default value is MAXROW().

<expN4> is the rightmost screen column TBROWSE is displayed. This argument is

equivalent to assigning the obj:NRIGHT with the same value. The valid range is

<expN2>...MAXCOL(). The default value is MAXCOL().

<expL5> is the pixel specification. If .T., the coordinates given are assumed in pixel.

If .F., the coordinates are in row/column. If not given or NIL, the current SET

PIXEL is considered.

<expL6> specifies whether the Tbrowse widget is resizeable by user or not. Default

is .F. which means the Tbrowse widget is fix. Applies for GUI mode only, ignored

otherwise.

<expC7> is a ToolTip string. Applies for GUI mode only, ignored otherwise.

<expO8> is a Font object. If not specified, the oApplic:Font is used. Applies for GUI

mode, ignored otherwise.

<expN9> specify the row height in pixel, see also tb:RowHeight. If not specified, the

size of one row is used. Applies for GUI mode, ignored otherwise.

<expA10> is the array to browse. If nor specified, the array need to be assigned by

tb:UserArray

Returns:

<obj> is the newly allocated TBROWSE object, usually assigned to a regular

FlagShip variable.

OBJ 258

Description:

TbrowseArr() is similar to the generic TBROWSENEW(), but will already predefine

tb:SKIPBLOCK, tb:GOTOPBLOCK and tb:GOBOTTOMBLOCK and is working on the

specified array.

If the optional arguments are supplied, the corresponding instance variables are filled

with these values.

Prior to using the TBROWSE object, at least one or more TBCOLUMNs (see

tb:ADDCOLUMN()) must be specified.

Tuning:

See TbrowseNew()

Example 1:

Browse thru multi-dimensional array 'myArray', uses the default keyboard handler

defined in .../system/tbrowsearrhand.prg. This is an extract from the example in

<FlagShip_dir>/examples/tbrowse_ar.prg

 oBr := TbrowseArr(6,5, 20,60, NIL, NIL, "My Browse")
 oBr:UserArray := myArray // assign array
 * oBr:ReadOnly := .T. // enable if editing is not desired
 * oBr:CanAppend := .F. // if append is not desired, def. is .T.
 for ii := 1 to len(myArray[1])
 oTbcol := TbColumnNew(aHeader[ii], .T.) // use def. array block
 if ii == 1
 oTbcol:Picture := "9999"
 oTbcol:ReadOnly := .T. // 1st column not editable
 elseif ii == 4
 oTbcol:Picture := "999999"
 endif
 oBr:AddColumn(oTbcol)
 next
 * oBr:Trim := .T. // optional, trim displayed char data
 oBr:Exec() // calls UDF assigned by :Handler

Example 2:

complete example is in <FlagShip_dir>/examples/tbrowse_ar.prg

 OBJ 259

Classification:

programming

Class:

uses TBROWSE class, prototyped in <FlagShip_dir>/include/ tbrclass.fh

Compatibility:

Available in FS5 only.

Source:

Source is available in <FlagShip_dir>/system/tbrowsearr.prg and in <FlagShip_dir>/

system/tbrowsehand.prg

Related:

TbrowseNew(), TbrowseDb(), TbColumn

OBJ 260

TbrowseDB ()

Syntax:

obj = TbrowseDb ([expN1], [expN2], [expN3],
[expN4], [expL5], [expL6], [expC7],
[expO8], [expN9])

Purpose:

Creates a new TBROWSE object with predefined database movement blocks,

optionally initialized by the arguments supplied.

Options:

<expN1> is the top screen row where TBROWSE is displayed. This argument is

equivalent to assigning the obj:NTOP with the same value. The valid range is

0...MAXROW(). The default value is zero.

<expN2> is the leftmost screen column where TBROWSE is displayed. This

argument is equivalent to assigning the obj:NLEFT with the same value, the valid

range is 0...MAXCOL(). The default value is zero.

<expN3> is the bottom screen row where TBROWSE is displayed. This argument is

equivalent to assigning the obj:NBOTTOM with the same value. The valid range

is <expN1>...MAXROW(). The default value is MAXROW().

<expN4> is the rightmost screen column TBROWSE is displayed. This argument is

equivalent to assigning the obj:NRIGHT with the same value. The valid range is

<expN2>...MAXCOL(). The default value is MAXCOL().

<expL5> is the pixel specification. If .T., the coordinates given are assumed in pixel.

If .F., the coordinates are in row/column. If not given or NIL, the current SET

PIXEL is considered.

<expL6> specifies whether the Tbrowse widget is resizeable by user or not. Default

is .F. which means the Tbrowse widget is fix. Applies for GUI mode only, ignored

otherwise.

<expC7> is a ToolTip string. Applies for GUI mode only, ignored otherwise.

<expO8> is a Font object. If not specified, the oApplic:Font is used. Applies for GUI

mode, ignored otherwise.

<expN9> specify the row height in pixel, see also tb:RowHeight. If not specified, the

size of one row is used. Applies for GUI mode, ignored otherwise.

Returns:

<obj> is the newly allocated TBROWSE object, usually assigned to a regular

FlagShip variable or to an array element.

 OBJ 261

Description:

TBROWSEDB() is similar to the generic TBROWSENEW(), but will already predefine

tb:SKIPBLOCK, tb:GOTOPBLOCK and tb:GOBOTTOMBLOCK.

If the optional arguments are supplied, the corresponding instance variables are filled

with these values.

Prior to using the TBROWSE object, at least one or more TBCOLUMNs (see

tb:ADDCOLUMN()) must be specified.

Tuning:

See TbrowseNew()

Example 1:

Browse through the database 'mydata.dbf', uses the default keyboard handles

defined in <FlagShip_dir>/system/tbrowsedbhand.prg. This is an extract from the

example in <FlagShip_dir>/examples/tbrowse_db.prg

 use mydada SHARED NEW
 @ 5,4,21,61 box B_PLAIN color ("gr+/b") // for Terminal i/o mode
 oBr := TbrowseDb(6,5, 20,60, NIL, NIL, "My Browse")

 for ii := 1 to Fcount()
 oBr:AddColumn(TbColumnNew(FieldName(ii), ;
 FieldBlock(FieldName(ii))))
 next
 * oBr:Handler := {|obj| TbrDbHandler(obj) } // default setting
 oBr:Exec() // process browsing

Example 2:

This example demonstrates many of the TBROWSE facilities. It will browse and sort

a given directory, using different color settings for each column.

 USE address INDEX adr1
 browsedb()
 FUNCTION browsedbf ()
 LOCAL mybrow := TBROWSEDB (1,0, MAXROW()-1, MAXCOL())
 * mybrow:GOTOPBLOCK := {|| DBGOTOP() } // predefined
 * mybrow:GOBOTTOMBL := {|| DBGOBOTTOM() } // predefined
 * mybrow:SKIPBLOCK := {|how,obj| skipdb (how) } // see chapt 4

 FOR ii = 1 TO FCOUNT() // see TbColumn class
 mybrow:ADDCOLUMN (TBCOLUMNNEW (FIELDNAME(ii), ;
 FIELDBLOCK (FIELDNAME(ii)))
 NEXT

 mybrowhandle (mybrow) // see chapter 5
 RETURN NIL

OBJ 262

Example 3:

See also the <FlagShip_dir>/system/dbedit.prg file for a complete example of the

TBROWSE usage. A complete example is available also in <FlagShip_dir>/

examples/tbrowse_db.prg

Classification:

programming

Class:

uses TBROWSE class, prototyped in <FlagShip_dir>/include/ tbrclass.fh

Compatibility:

Available in FS4, C5 and VO. Arguments <expL5> to <expN9> are new in FS5.

Source:

Source is available in <FlagShip_dir>/system/tbrowsedb.prg and in <FlagShip_dir>/

system/tbrowsedbhand.prg

Related:

TBROWSENEW(), TBCOLUMN, DBEDIT()

 OBJ 263

Tbrowse Class Index

Class Tbrowse

Inherits from: -

Inherited by: -

Class prototype: tbrclass.fh

Defines: tbrowse.fh

AddColumn() METHOD Add new TbColumn object

ApplyKey() METHOD Evaluates the Tb:SetKey() code block

AutoLite Export Highlights current cell automatically

AutoRefresh ACC/ASS Set/get auto refresh seconds or 0 if none

AutoRefresh() Method Process auto refresh each specified seconds

Border ACC/ASS Character value drawn around the TBrowse

CanAppend ACC/ASS Appending of new records allowed ?

Cargo Export Any user data

Col() METHOD Column coordinate of currently selected cell

ColAdjust Export Adjust large columns (left/centered)

ColCount ACCESS Total number of data columns

ColorRect() METHOD Alters the color of a rectangular group of cells

ColorSpec ACC/ASS Color attribute for the Tbrowse display

ColPos ACC/ASS Column number of current selection

ColSep ACC/ASS Character value of column separator

ColSepEof ACC/ASS Display column separator in empty rows?

ColVisibleCoord() METHOD Coordinate of specified visible column

ColVisibleWidth() METHOD Returns the really visible column width

ColWidth() METHOD Width of specified column

Configure() METHOD Reexamine all instances

Data() METHOD Get/set cell data

DataChangedBlock ACC/ASS Code block returning .T. when database changed

DbAlias ACCESS Alias name of the main database

DeHilite() METHOD De-highlight current cell

DelColumn() METHOD Deletes specified column

Destroy() METHOD Destroy Tbrowse object

Down() METHOD Moves the Tbrowse cursor down one row

EnableMouseClick ACC/ASS Enable/disable mouse click

End() METHOD Moves the Tbrowse cursor to the rightmost column

Exec() METHOD Process browsing

FootSep ACC/ASS Character of column footing separator

ForceStable() METHOD Performs a full stabilization

ForceStabl() METHOD same as ForceStable()

Freeze ACC/ASS Data columns frozen to the left

Font ACC/ASS Used font object for Tbrowse

GetColumn() METHOD Returns the specified TBCOLUMN object

GoBottomBlock ACC/ASS Code block for the tb:GOBOTTOM() method

OBJ 264

GoBottom() METHOD Moves the data to the last logical record

GoMousePos() METHOD Perform mouse related activities on TBrowse

GoTopBlock ACC/ASS Code block for the tb:GOTOP() method

GoTop() METHOD Moves the data to the first logical record

GuiColorSpec ACC/ASS Array of ColorPair objects for color attribute

GuiFontSpec ACC/ASS Array of oFont objects

GuiGrid ACC/ASS Enables/disables drawing the grid

Handler ACC/ASS Codeblock invoking the keyboard/mouse handler

HeadSep ACC/ASS Character of column heading separator

HeadStyle() METHOD Set/get header style in GUI mode

Hide() METHOD Hides Tbrowse until tb:Show()

Hilite() METHOD Highlights current cell

HitBottom ACC/ASS Attempt to navigate beyond the end-of-data ?

HitTest() METHOD Checks if the given coordinates are in Tbrowse

HitTop ACC/ASS Attempt to navigate beyond the beg-of-data ?

Home() METHOD Moves the Tbrowse cursor to leftmost column

HScrollBar() ASSIGN Sets the horizontal scrollbar visibility

IncrSearch ACC/ASS Incremental search requested?

InsColumn() METHOD Inserts a TBCOLUMN object

Invalidate() METHOD Re-draw the entire TBROWSE display at stabil

KillFocus() METHOD For @..Get/Read only

Left() METHOD Moves the Tbrowse cursor left one data column

LeftVisible ACCESS Position of the leftmost unfrozen column

LineCursor ACC/ASS internal

McolPos ACC/ASS Sets/gets column where mouse cursor is located

Message ACC/ASS Message displayed in @..Get/Read

MouseOn() METHOD Enable/disable the mouse in GUI Tbrowse

MrowPos ACC/ASS Sets/gets row where mouse cursor is located

NBottom ACC/ASS Bottom screen row

NBottom() METHOD same as NBottom ACC/ASS

NLeft ACC/ASS Leftmost screen column

NLeft() METHOD same as NLeft ACC/ASS

NRight ACC/ASS Rightmost screen column

NRight() METHOD same as NRight ACC/ASS

NTop ACC/ASS First screen row

NTop() METHOD same as NTop ACC/ASS

OnUpdate() METHOD Triggers UDF if edited or added data

PageDown() METHOD Moves the data one window page downwards

PageUp() METHOD Moves the data one window page upwards

PageSkip ACC/ASS Redefines behavior of PageDown() and PageUp()

PanEnd() METHOD Moves the browse cursor to rightmost column

PanHome() METHOD Moves the browse cursor to leftmost column

PanLeft() METHOD Moves the browse cursor to left column

PanRight() METHOD Moves the browse cursor to right column

ReadOnly ACC/ASS Are Tbrowse fields editable?

RefreshAll() METHOD Marks all data rows as invalid

RefreshCur() METHOD Marks current data row as invalid

 OBJ 265

RefreshCurrent() METHOD same as RefreshCur()

Right() METHOD Moves the browse cursor right one data column

RightVisible ACCESS Position of the rightmost unfrozen column

Row() METHOD Row coordinate of currently selected cell

RowCache ACC/ASS Size of the browse cache for page skip

RowCount ACCESS Number of visible data rows

RowHeight ACC/ASS Sets/gets the height of each row in pixel

RowPos ACC/ASS Current row number

ScrollLeft() METHOD Scroll view to left

ScrollRight() METHOD Scroll view to right

SelectedCol ACC/ASS currently selected column

SelectedRow ACC/ASS currently selected row

SelectedRecno ACC/ASS currently selected record

SelectedValue ACC/ASS currently selected value

SetColumn() METHOD Replaces the specified Tbcolumn

SetFocus() METHOD For @..Get/Read only

SetKey() METHOD Set/get code block associated to Inkey value

SetKeyDef() METHOD Set default tb:SetKey() redirections

SetStyle() METHOD Manage a 1-dimensional array with log flags

Show() METHOD Re-display hidden Tbrowse

SkipBlock ACC/ASS Code block for tb:DOWN/UP(), tb:PAGEDOWN/UP()

Stabilize() METHOD Performs incremental stabilization

Stable ACC/ASS Is the TBROWSE object stable?

TimeOut ACC/ASS Set/get TimeOut seconds

ToolTip ACC/ASS Set/get the tooltip string

Trim ACC/ASS Trim character fields

Up() METHOD Moves the TBROWSE cursor up one row

UserArray ACC/ASS Array with Tbrowse data for TbrowseArr()

UserArrayPos ACC/ASS Current row in data-array, used by skipper

Visible ACCESS Is Tbrowse visible or hidden?

VScrollBar ASSIGN Sets the vertical scrollbar visibility

OBJ 266

Tbrowse Class Properties

[tc =] tb:ADDCOLUMN (<expO1>)

Adds a new TBCOLUMN object <expO1> to the TBROWSE object and increases the

tb:COLCOUNT instance by one. See examples in Chapter 4, TBROWSENEW(),

TBROWSEDB() and TbColumn class.

tb:AUTOLITE Access/Assign

Contains a logical value. When set to TRUE (the default), the stabilize method

automatically highlights the current cell as part of stabilization.

tb:AUTOREFRESH Access/Assign

Set/get auto-refresh timeout in seconds or 0 if none set. Used in the default DbEdit()

handler (see <FlagShip_dir>/system/dbedit.prg) and considered in default

TbrowseDb() handler (see <FlagShip_dir>/system/tbrowsedbhand.prg). It can be

freely set and used in your own Tbrowse handler too. If you assign numeric value

between 1 and 86399 (= 1 second to 24 hours), the oTbr:AutoRefresh() method will

check for database changes by other users and refresh Tbrowse display if required.

To disable AutoRefresh, assign 0.

<retN> := tb:AUTOREFRESH([<expN|expL>])

Process auto refresh each specified seconds or use previously set value, if any. The

tb:Autorefresh() considers changes by other users on the same database and will

refresh the display if any changes occured. If <expN> is given and numeric, it

behaves like tb:AutoRefresh assignment. If <expL> is .T. the check is performed

regardless tb:AutoRefresh value.

This method is used in DbEdit() (see <FlagShip_dir>/system/dbedit.prg) and default

TbrowseDb() handler (see <FlagShip_dir>/system/tbrowsedbhand.prg). It can be

freely used in your own Tbrowse handler, as demonstrated in <FlagShip_dir>/

examples/tdbedit.prg

The method may be invoked in the Tbrowse handler on idle status. If the last check

+ tb:AutoRefresh is greater than current seconds(), it checks the database (if any) for

use also by others and if so, checks the .dbf update counter (see

DbObject():Info(DBI_INTGRCOUNT)) for changes. If so, it then performs refresh by

tb:RefreshAll().

 OBJ 267

<retN> := tb:APPLYKEY([<expN>])

Evaluates the code block associated with the key in tb:SetKey(<expN>,

<codeBlock>) setting. The return value <retN> is passed from the code block's return

value, and specifies the manner in which the key should be processed by the handler:

Constant Value Meaning

TBR_EXIT -1 User request for the browse to lose input focus and to exit

Tbrowse, ignores corresp. SET KEY

TBR_CONTINUE 0 Key <expN> is set by tb:SetKey() or SetKeyDef(), code

block associated with <nExp> was evaluated, do not

process default handler action, nor previously set SET

KEY

TBR_EXCEPTION 1 Key <expN> not set by tb:SetKey() or SetKeyDef()

Evaluate corresponding SET KEY if set, the handler

should then process default key action

TBR_DEFACTION 2 Key <expN> is set by tb:SetKey() or SetKeyDef(), the

handler should process default key action, but ignores

corresponding SET KEY if such set.

The TBR_* constants are available in tbrowse.fh include file. If the code block for

<expN> is not set, tb:ApplyKey() returns TBR_EXCEPTION. If the code block returns

invalid value, TBR_CONTINUE is returned from tb:ApplyKey().

tb:CANAPPEND Access/Assign

Logical value specifying whether appending of new records is allowed. The default

value is TRUE, new records can be appended.

tb:CARGO Access/Assign

Contains any user data of any type to store information retrieved later in the program.

Not used by the TBROWSE system itself. The default is NIL.

retN = tb:COL ([expL1])

Returns the coordinate of currently selected column, comparable to COL() function.

<expL1> is the pixel specification for GUI. If .T., the return value is in pixel. If .F.,

<retN> is in row/column. If <expL1> is not given or is NIL, current SET PIXEL is

considered.

tb:COLADJUST Access/Assign

Controls adjustment of large columns. If 0 (the default), a large column which does

not fit in visible window area, will be centered. Specifying value > 0, the column will

be moved so, that at least <value> pixels are visible at the left site, in front of the

column. You may achieve the same behavior by setting the global variable

OBJ 268

_aGlobSetting[GSET_G_N_TBROW_COLADJ]:= value which may preferably be used

for Tbrowse wrappers like DbEdit(). Considered in GUI mode, ignored otherwise.

tb:COLCOUNT Access

Contains a numeric value indicating the total number of data columns specified in the

TBROWSE object using the tb:ADDCOLUMN() method.

[tb =] tb:COLORRECT (<expA1>, <expA2>)

Alters the color of a rectangular group of cells. Applies for Terminal i/o mode only,

ignored in GUI mode.

The <expA1> is an array of four numeric coordinates (top row, left column, bottom

row, and right column) referring to cells within the current TBROWSE data display,

not to the physical screen coordinates. The valid range is 1,1...tb:ROWCOUNT,

tb:COLCOUNT. The tb:COLORRECT() is stronger than tc:COLORBLOCK on the

same coordinates.

The <expA2> argument is an array of two numbers, specifying the color index in

tb:COLORSPEC for normal and highlighted color.

Such re-colored cells retain the new color until the cells are scrolled down or up out

of the screen, or tb:REFRESH*() is executed. Horizontal panning does not change the

new coloring. In fact, the currently invisible cells to the left and right can be colored

using tb:COLORRECT().

Example for re-coloring all cells to yellow on blue of the entire window, with the

exception of the first and last column:

 tbr:COLORSPEC := "W/B, W+/B, BG+/W, GR+/B, R+/B, N/W"
 tbr:COLORRECT ({1,2, brow:ROWCOUNT, brow:COLCOUNT -1}, {4,3})

An alternative to tb:ColorRect() is 3rd array element of tc:ColorBlock() and

tc:GuiColorBlock() which highlights current Tbrowse row.

tb:COLORSPEC Access/Assign

Contains a character string defining a color attribute for the TBROWSE display. Unlike

SET COLOR TO, you may specify as many attributes as you require. Each color

attribute is internally stored in an array element, whose index is used in

tc:COLORBLOCK. When TBROWSE is being created, the current SETCOLOR() value is

copied into tb:COLORSPEC. Applicable for Terminal i/o mode only, ignored in GUI

where the tb:GUICOLORSPEC may be used instead.

Example to set standard display yellow on blue and the highlight bar red on cyan:

 tb = TBROWSEDB()
 tc = TBCOLUMNNEW("Name", {|| FIELD->name})
 tb:COLORSPEC := SETCOLOR() + "W+/B, R+/BG" // total 5+2=7 elements
 tc:COLORBLOCK := {|x| {6,7}} // use element 6 and 7
 tbr:ADDCOLUMN(tc)

 OBJ 269

See <FlagShip_dir>/examples/tbrowse_ar.prg for complete example

tb:COLPOS Access/Assign

Contains a numeric value (starting at one) indicating the data column where the

TBROWSE cursor is currently located. On assignment, only columns of the currently

visible area are accepted. When you need to move to invisible column, use tb:right()

or tb:left(), for example to display the 12th column automatically in visible area:

 if tb:rightvisible >= 12
 while tb:leftvisible > 12 .and. tb:rightvisible > 12
 tb:left()
 enddo
 elseif tb:colcount >= 12
 while tb:leftvisible < 12 .and. tb:rightvisible < 12
 tb:right()
 enddo
 endif
 tb:colpos := 12
 tb:refreshall() ; tb:forcestable()

tb:COLSEP Access/Assign

Contains a character value that defines a column separator for TBCOLUMN which

does not containing a column separator of its own. The default is one space.

Applicable for Terminal mode only, ignored in GUI mode where tb:GUIGRID may be

used instead.

tb:COLSEPEOF Access/Assign

Contains logical value that specifies whether column separators should be displayed

even if the row is empty, i.e. for not available data. The default is .T.

retN = tb:COLVISIBLECOORD ([expN1], [expL2])

Returns the coordinate of currently visible column <expN1>. If <expN1> is not given

or is NIL, currently selected column is used.

<expL2> is the pixel specification for GUI. If .T., the returned value is in pixel. If .F.,

<retN> is in row/column. If <expL2> is not given or is NIL, current SET PIXEL is

considered.

If the returned value is negative (usually -999), the given column is currently invisible,

i.e. <expN1> is not in range tb:LEFTVISIBLE to tb:RIGHTVISIBLE. If the leftmost

column is only partially visible, the returned <retN> value is lower than tb:NLEFT.

OBJ 270

retN = tb:COLVISIBLEWIDTH ([expN1], [expL2])
retN = tb:COLVISIBLEWIDTH ([expL2])

Returns the visible width of column number <expN1> or of current column if <expN1>

is not given or is NIL. If <retN> is negative, the column is currently invisible. If

<retN> is less than tb:COLWIDTH(<expN1>), the column is only partially visible.

<expL2> is the pixel specification for GUI. If .T., the returned value is in pixel. If .F.,

<retN> is in row/column. If <expL2> is not given or is NIL, current SET PIXEL is

considered.

retN = tb:COLWIDTH ([expN1], [expL2])

Returns the display width of column number <expN1> or of current column if

<expN1> is not given or is NIL. If <expN1> is out of the valid range

1...tb:COLCOUNT, <retN> is <= 0

<expL2> is the pixel specification for GUI. If .T., the returned value is in pixel. If .F.,

<retN> is in row/column. If <expL2> is not given or is NIL, current SET PIXEL is

considered.

[tb =] tb:CONFIGURE ()

Causes the TBROWSE object to reexamine all instance variables and TBCOLUMN

objects, reconfiguring its internal settings as required. This method forces

reconfiguration when a TBCOLUMN object is modified directly.

ret = tb:DATA ([expN1], [exp2])

Get or set data of current or specified cell within current row. This method is a

shorthand for EVAL((tb:GetColumn(expN1)):Block, exp2)

<expN1> is the column number (in range 1 to tb:COLCOUNT). If <expN1> is not given

or is NIL, current column is used.

<exp2> is optional value to be set. If <exp2> is not given or is NIL, only the current

cell value is returned. Otherwise, the valtype() must be equivalent to valtype() of

the cell.

<ret> is the current (or modified) cell value, NIL signals an error.

tb:DBALIAS Access

Contains the ALIAS name of the selected database at the time of invoking TBrowse

or latest at invoking this property, or is "" otherwise. Used in default skippers to

support SET RELATION.

 OBJ 271

[tb =] tb:DEHILITE ()

Causes the current cell (the cell to which the browse cursor is positioned) to be de-

highlighted. This method is designed for use when tb:AUTOLITE is set to TRUE (the

default).

tc = tb:DELCOLUMN (<expN1>)

Deletes the specified column <expN1> from TBROWSE. The returning value is a

TBCOLUMN object which can be preserved by assigning the method to a FlagShip

variable.

[tb =] tb:DOWN ()

Moves the TBROWSE cursor down one row. If the cursor is already on the bottom

row, the display is scrolled up and a new row is brought into view. If the data pointer

is already at the logical end-of-file and the browse cursor is already on the bottom

row, tb:HITBOTTOM instance is set TRUE.

tb:ENABLEMOUSECLICK Access/Assign

Contins logical value. When set to TRUE (the default), a mouse click selects the

corresponding item. You may assign FALSE (.F.) before edit the cell to avoid

unintended re-positioning by mouse click, and set .T. when the new value is replaced.

Applicable in GUI only, ignored otherwise. See also default handlers <FlagShip_dir>/

system/tbrowsehand.prg and tbrowsedbhand.prg

[tb =] tb:END ()

Moves the browse cursor to the rightmost data column currently visible. The highlight

bar remains at the same row.

[tb =] tb:EXEC ()

Process browsing using the default or by tb:Handler assigned keyboard handler.

Standard handlers (tbrowsehand.prg and tbrowsedbhand.prg) supports following

keys and actions:

Key Action in READ

Cursor up ctrl-E Up one row yes

Cursor down ctrl-X Down one row or append

record

* yes

Cursor <- ctrl-S Column left yes

Cursor -> ctrl-D Column right yes

TAB ctrl-H Scroll right (next GET) no

shift-TAB shift-ctrl-H Scroll left (prev GET) no

PgUp ctrl-R Previous window yes

OBJ 272

PgDn ctrl-C Next window yes

Home ctrl-A Leftmost curr. column yes

End ctrl-F Rightmost curr.column yes

ctrl-Home ctrl-] First item in window yes

ctrl-End ctrl-F Last item in window yes

ctrl-PgUp ctrl-- First screen row yes

ctrl-PgDn ctrl-^ Last screen row yes

Esc Terminate Tbrowse() (next GET) yes

Enter ctrl-M Edit current cell ** yes

Mouse-Left-Doubleclick Edit current cell ** *** yes

Mouse-Wheel previous/next row *** yes

Mouse-

Wheel+Shift/Alt/Ctrl

 previous/next window *** yes

* Append only when oTb:CanAppend is .T. and current row = last row

** Available only when oTb:ReadOnly is .F.

*** in GUI mode only

tb:FOOTSEP Access/Assign

Contains a character or string which specifies the column footing separator. The

string is displayed to the left of the current column, if it is not the first one. The last

character of the string is used repetitively for the footing line underlining the column.

This tb:FOOTSEP separator is used as default, when a column separator tc:FOOTSEP

is not specified. Null-string "" is preset. This completely omits displaying the footing

separator. See example in TBCOLUMN class.

[tb =] tb:FORCESTABLE ()

Performs a full stabilization of the TBROWSE, displaying all visible TBROWSE data. It

is similar to performing

 DO WHILE ! tb:STABILIZE()
 ENDDO

tb:FREEZE Access/Assign

Contains a numeric value that defines the number of data columns frozen to the left

of the display. Frozen columns are always visible, even when other columns are

panned off the display. The default is zero (no frozen columns). Available in Terminal

i/o mode only.

tb:FONT Access/Assign

The used font object for Tbrowse. If not specified, oApplic:Font is taken. Apply for

GUI mode only, ignored otherwise.

 OBJ 273

tc = tb:GETCOLUMN (<expN1>)

Returns the TBCOLUMN object specified by <expN1>.

[tb =] tb:GOBOTTOM ()

Moves the data to the last logical record by evaluating the tb:GOBOTTOMBLOCK code

block. The TBROWSE display is refilled with the bottommost available data, the cursor

moved to the row containing the last record. The pan position of the window remains

unchanged.

tb:GOBOTTOMBLOCK Access/Assign

Contains a code block executed in response to repositioning at the last data element

when using the tb:GOBOTTOM() method. One argument <oSelf> is passed to the

block. It is the Tbrowse object self which can be e.g. passed to an UDF function,

instead of using public variables. The code block body typically contains an index of

the last array element, or the result of the database movement with the

DBGOBOTTOM() function (predefined when using TBROWSEDB()).

If there is no tb:GOBOTTOMBLOCK assigned, Tbrowse moves forwards using the

tb:SKIPBLOCK, which is in the most cases less effective. It is roughly comparable to

GO BOTTOM vs. WHILE !eof() ; SKIP ; ENDDO on databases. If the tb:GOBOTTOM-

BLOCK is available, it may be used internally also by other movements.

Compatibility note: Clipper do not pass any argument to the code block. But when

you specify (and not use) the tbrowse object as 1st parameter, your source remain

backward compatible to Clipper.

[tb =] tb:GOTOP ()

Moves the data to the first logical record by evaluating the tb:GOTOPBLOCK code

block. The TBROWSE display is refilled with the topmost available data; the cursor

moved to the first row. The pan position of the window remains unchanged.

tb:GOTOPBLOCK Access/Assign

Contains a code block executed in response to repositioning at the first data element

when using the tb:GOTOP() method. One argument is passed to the block. It is the

Tbrowse object self which can be e.g. passed to an UDF function, instead of using

public variables. The code block body typically contains an index of the first array

element, or the result of the database movement with the DBGOTOP() function

(predefined when using TBROWSEDB()).

If there is no tb:GOTOPBLOCK assigned, Tbrowse moves backwards using the

tb:SKIPBLOCK, which is in the most cases less effective. It is roughly comparable to

GO TOP vs. WHILE !bof() ; SKIP -1 ; ENDDO on databases. If the tb:GOTOPBLOCK

is available, it may be used internally also by other movements.

OBJ 274

Compatibility note: Clipper do not pass any argument to the code block. But when

you specify (and not use) the tbrowse object as 1st parameter, your source remain

backward compatible to Clipper.

tb:GUICOLORSPEC Access/Assign

GuiColorSpec is similar to ColorSpec property for Terminal i/o mode. It contains an

array of ColorPair objects or color strings (see SET COLOR) defining the color

attribute for the TBROWSE display in GUI mode. You may specify as many attributes

as you require. The corresponding color element is used in tc:GUICOLORBLOCK.

Applicable for GUI i/o mode only, ignored in Terminal i/o, where the tb:COLORSPEC

may be used instead. Example:

 tb := TBROWSEDB()
 tb:GUICOLORSPEC := {"N/W+", ;
 ColorPair{Color{255,0,0},Color{0,127,127}}, ;
 "#FFFFFF/#E5F902" }
 tc := TBCOLUMNNEW("Name", {|| FIELD->name})
 tc:GUICOLORBLOCK := {|x| {1,2}} // use element 1 and 2
 tb:ADDCOLUMN(tc)

See <FlagShip_dir>/examples/tbrowse_ar.prg for complete example

tb:GUIGRID Access/Assign

Enables/disables drawing the grid = separator between columns and rows.

Applicable for GUI mode only, ignored otherwise, where the tb:COLSEP apply.

tb:HANDLER Access/Assign

Retrieve or assign a codeblock invoking the keyboard handler when the tb:Exec()

method is called. The codeblock receives one argument, the Tbrowse object self.

The default codeblock depends on the Tbrowse instantiation and is either

TbrHandler() available in source in <FlagShip_dir>/system/tbrowsehand.prg, or the

TbrDbHanler() for database access, available in .../system/tbrowsedbhand.prg

 OBJ 275

tb:HEADSEP Access/Assign

Contains a character or string which specifies the column heading separator. The

string is displayed to the left of the current column, if it is not the first one. The last

character of the string is used repetitively for the heading line displayed over the

column. The tb:HEADSEP is used as default, when a column separator tc:HEADSEP

is not specified. Null-string "" is preset, which completely omits the display of the

heading separator. See example in TBCOLUMN class and TBROWSENEW().

[retA =] tb:HEADSTYLE ([<expL1>], [<expN2>], [<expN3>])

Sets and/or gets header style in GUI mode, ignored otherwise. All Tbrowse columns

are dispayed in the same style.

<expL1> is optional logical value, where .T. sets the header to multi- line mode

(separated by ";" or chr(10) in columns header string), .F. displays single-line

Tbrowse header. See "Tuning" for defaults and global settings.

<expN2> is optional numeric value specifying horizontal adjustment in multi-line

mode. The constant is defined in tbrowse.fh

Constant Va lue Meaning

TBR_HEAD_LEFT 0 Align header left (default)

TBR_HEAD_RIGHT 1 Align header right

TBR_HEAD_HCENTER 2 Center horizontal

<expN3> is optional numeric value specifying vertical adjustment in multi-line mode.

The constant is defined in tbrowse.fh

Constant Va lue Meaning

TBR_HEAD_VCENTER 0 Center verical (default)

TBR_HEAD_TOP 1 Align at top

TBR_HEAD_BOTTOM 2 Align at bottom

<retA> returns current setting as an array with three elements, corresponding to

<expL1>, <expN2> and <expN3> of above description.

[tb =] tb:HILITE ()

Causes the current cell (the cell to which the browse cursor is positioned) to be

highlighted. This method is designed for use when tb:AUTOLITE is set to FALSE.

tb:HITBOTTOM Access/Assign

Contains a logical value indicating whether an attempt was made to navigate beyond

the end of the available data. Normally, the value contains FALSE. During

stabilization, the value is set TRUE if it was unable to skip forward as many records

as requested.

OBJ 276

tb:HitTest(nMouseRow, nMouseCol, [lPixel]) ─> nStatus

Determines if the mouse cursor is within the region of the screen that the Tbrowse

occupies. Applicable in GUI mode only.

<nRow> Numeric value representing the current or tested screen row position of the

mouse cursor.

<nCol> Numeric value representing the current or tested screen row position of the

mouse cursor.

<lPixel> If specified TRUE, the mouse coordinates are assumed in pixel. If FALSE,

the mouse parameters are assumed in current row/col coordinates. If this

parameter is not specified (i.e. NIL), the kind of passed mouse coordinates is

determined from the current SET PIXEL setting.

<nStatus> Returned numeric value indicating the relationship of the mouse cursor

with the Tbrowse. The constants are specified in button.fh header file.

Value Constant The mouse cursor is ...

0 HTNOWHERE not within the region of the screen that the

Tbrowse occupies

-1 HTTOPLEFT on the top left corner of the Tbrowse border

-2 HTTOP on Tbrowse top border

-3 HTTOPRIGHT on the top right corner of the Tbrowse border

-4 HTRIGHT on Tbrowse right border

-5 HTBOTTOMRIGHT on the bottom right corner of Tbrowse border

-6 HTBOTTOM on Tbrowse bottom border

-7 HTBOTTOMLEFT on the bottom left corner of Tbrowse border

-8 HTLEFT on Tbrowse left border

-5121 HTCELL on any of Tbrowse data cell

-5122 HTHEADING on Tbrowse heading

-5124 HTHEADSEP on Tbrowse heading separator

-5131 HTVSCROLLBAR on Tbrowse vertical scrollbar

-5132 HTHSCROLLBAR on Tbrowse horizontal scrollbar

-5133 HTVSCROLLBARUP on Tbrowse vertical scrollbar, button up

-5134 HTVSCROLLBARDOWN on Tbrowse vertical scrollbar, button down

-5135 HTHSCROLLBARLEFT on Tbrowse horizontal scrollbar, button left

-5136 HTHSCROLLBARRIGHT on Tbrowse horizontal scrollbar, button right

-5137 HTSCROLLBAREDGE on Tbrowse scrollbar, button at bottom right

tb:HITTOP Access/Assign

Contains a logical value indicating whether an attempt was made to navigate past

the beginning of the available data. Normally, the value contains FALSE. During

stabilization, the value is set TRUE if it was unable to skip backward as many records

as requested.

 OBJ 277

[tb =] tb:HOME ()

Moves the browse cursor to the leftmost unfrozen data column. The high-light bar

remains at the same row.

tb:HSCROLLBAR Assign

Change visibility of horizontal scrollbar in GUI mode, default s true.

tb:INCRSEARCH Access/Assign

Contains logical value indicating whether an incremental search should apply at

character input or not. The default is .F. = disabled search. The incremental search

allows you to search for any character data in the current index by simply typing the

requested data. Implemented for the default handler assigned with TbrowseDb(). You

may re-implement the <FlagShip_dir>/system/tbrowsedbhand.prg in your source

when non-standard search is required.

[tc =] tb:INSCOLUMN (<expN1>, <expO2>)

Inserts a TBCOLUMN object <expO2> at the specified position <expN1>. Unlike

tb:ADDCOLUMN(), which adds columns at the end, tb:INSERTCOLUMN() inserts new

columns anywhere in the TBROWSE.

[tb =] tb:INVALIDATE ()

Invoking this method causes the next stabilization to re-draw the entire TBROWSE

display, including headings, footings and all data rows. This method does not refresh

the visible data. This can be performed using the tb:REFRESHALL() method.

[tb =] tb:LEFT ()

Moves the browse cursor left one data column. If the cursor is on the leftmost

displayed column, the display is horizontally scrolled to bring the previous data

column (if there is one) into view, similar to tb:PANLEFT().

tb:LEFTVISIBLE Access

Contains a numeric value indicating the position of the leftmost unfrozen column

visible in the browse display. If all columns are frozen, the value contains zero, one

otherwise.

OBJ 278

tb:NBOTTOM Access/Assign

retN = tb:NBOTTOM ([expN1], [expL2])

Contains a numeric value specifying the bottom screen row where the TBROWSE is

displayed. The value is preset by arguments of TBROWSENEW() or TBROWSEDB().

If not specified, the default is MAXROW().

The tb:NBOTTOM() method is generalized tb:NBOTTOM acc/assign property. It returns

the tb:NBOTTOM value, where <expN1> is optional new bottom screen row and

<expL2> is pixel specification for GUI. If <expL2> is .T., the <expN1> and the return

value are in pixel. If <expL2> is .F., <expN1> and <retN> are in row/column. If

<expL2> is not given, current SET PIXEL is considered, same as in tb:NBOTTOM

access.

tb:NLEFT Access/Assign

retN = tb:NLEFT ([expN1], [expL2])

Contains a numeric value specifying the leftmost screen column where the TBROWSE

is displayed. The value is preset by arguments of TBROWSENEW() or TBROWSEDB().

If not specified, the default is zero.

The tb:NLEFT() method is generalized tb:NLEFT access/assign property. It returns the

tb:NLEFT value, where <expN1> is optional new leftmost screen column and <expL2>

is pixel specification for GUI. If <expL2> is .T., the <expN1> and the return value are

in pixel. If <expL2> is .F., <expN1> and <retN> are in row/column. If <expL2> is not

given, current SET PIXEL is considered, same as in tb:NLEFT access.

tb:NRIGHT Access/Assign

retN = tb:NRIGHT ([expN1], [expL2])

Contains a numeric value specifying the rightmost screen column where the

TBROWSE is displayed. The value is preset by arguments of TBROWSENEW() or

TBROWSEDB(). If not specified, the default is MAXCOL().

The tb:NRIGHT() method is generalized tb:NRIGHT access/assign property. It returns

the tb:NRIGHT value, where <expN1> is optional new rightmost screen column and

<expL2> is pixel specification for GUI. If <expL2> is .T., the <expN1> and the return

value are in pixel. If <expL2> is .F., <expN1> and <retN> are in row/column. If

<expL2> is not given, current SET PIXEL is considered, same as in tb:NRIGHT access.

tb:NTOP Access/Assign

retN = tb:NTOP ([expN1], [expL2])

Contains a numeric value specifying the first screen row where the TBROWSE is

displayed. The value is preset by arguments of TBROWSENEW() or TBROWSEDB().

If not specified, the default is zero.

 OBJ 279

The tb:NTOP() method is generalized tb:NTOP access and assign property. It returns

the tb:NTOP value, where <expN1> is optional new topmost screen row and <expL2>

is pixel specification for GUI. If <expL2> is .T., the <expN1> and the return value are

in pixel. If <expL2> is .F., <expN1> and <retN> are in row/column. If <expL2> is not

given, current SET PIXEL is considered, same as in tb:NTOP access.

[expB =] tb:ONUPDATE [:= expB] Access/Assign

Triggers an UDF from the default handler for edited or added data. <expB> is a code

block receiving two arguments, the Tbrowse object and the curent changed mode: 1

= new record appended, 2 = value chanded, 3 = data changed after append.

Example:

 tb := TbrowseDb(...) // or TbrowseArr(...) or TbrowseNew(...)
 cbID := {|| ORDERS->ID }
 cbName := {|val| if(val == NIL, ORDERS->Name, ORDERS->Name := val}
 tb:AddColumn := TbColumnNew("ID-Num", cbID) // uses r/o codeblock
 tb:AddColumn := TbColumnNew("Name", cbName) // uses r/w codeblock
 tb:OnUpdate := {|obj,mode| MySaveRec(obj,mode)}
 tb:Exec()
 ...
 /* ---
 * MySaveRec() triggered by tb:OnUpdate{...}
 * Note: the REPLACE is done automatically by default handler
 */
 Function MySaveRec(oTbr,mode)
 local iColNum := oTbr:ColPos // Current column number
 local oTbCol := oTbr:GetColumn(iColNum)
 local data := Eval(oTbCol:Block) // Retrieve current data

 alert("Saving changed data in column " + trim(ltrim(iColNum)) + ;
 ";new value = " + trim(ltrim(data)) + ;
 if(oTbr:SelectedRecno > 0, ;
 ";for record# " + ltrim(oTbr:SelectedRecno), ;
 ";for record with ID = " + ;
 trim(ltrim(Eval(oTbr:GetColumn(1):Block)))))
 return

[tb =] tb:PAGEDOWN ()

Moves the data one window page downwards skipping tb:ROWCOUNT records (from

the first visible row) by evaluating the tb:SKIPBLOCK code block. The cursor remains

on the same row if possible or is moved to the last row containing data. If the end-of-

data is reached. When issuing the stabilization method, the TBROWSE display is

refilled with the bottommost available data and tb:HITBOTTOM is set TRUE.

[tb =] tb:PAGEUP ()

Moves the data one window page upwards skipping tb:ROWCOUNT records (from the

first visible row) by evaluating the tb:SKIPBLOCK code block. The cursor remains on

OBJ 280

the same row. If the logical first data record is already shown, the cursor is set to the

first row and tb:HITTOP is set TRUE during the invocation of a stabilizing method.

[expN =] tb:PAGESKIP [:= expN] Access/Assign

Redefines the bahavior of PageDown() and PageUp(). Considered in GUI mode only.

<expN> = 0: default skip = tb:ROWCACHE if set, otherwise tb:ROWCOUNT

 -1: skip by visible rows/page = tb:ROWCOUNT

 -2: skip by half visible rows/page = tb:ROWCOUNT/2

 nn: skip by specified rows, tb:ROWCOUNT/2 <= nn <= tb:ROWCACHE

[tb =] tb:PANEND ()

Moves the browse cursor to the rightmost data column, causing the display to be

panned completely to the right.

[tb =] tb:PANHOME ()

Moves the browse cursor to the leftmost data column, causing the display to be

panned completely to the left.

[tb =] tb:PANLEFT ()

Pans the display without changing the browse cursor. If a left column is available, the

screen is scrolled horizontally right to display a new left column. As opposed to

tb:LEFT(), tb:PANLEFT() will always scroll the columns (if possible) and does not move

the cursor to the left column.

[tb =] tb:PANRIGHT ()

Pans the display without changing the browse cursor. If a right column is available,

the screen is scrolled horizontally left to display a new right column. As opposed to

tb:RIGHT(), tb:PANRIGHT() will always scroll the columns (if possible and the available

columns are not frozen) and does not move the cursor to the right column.

tb:READONLY Access/Assign

Logical value specifying that all fields of Tbrowse can or cannot be edited. The default

value is FALSE, the fields are editable. See also oTbColumn:READONLY for column

setting.

[tb =] tb:REFRESHALL ()

Internally marks all data rows as invalid, causing them to be refilled and redisplayed

at the next stabilization.

 OBJ 281

[tb =] tb:REFRESHCURRENT ()

Internally marks the current data row as invalid, causing it to be refilled and

redisplayed at the next stabilization.

[tb =] tb:RIGHT ()

Moves the browse cursor right one data column. If the cursor is on the rightmost

displayed column, the display is horizontally scrolled to bring the next data column (if

there is one) into view, similar to tb:PANRIGHT().

tb:RIGHTVISIBLE Access

Contains a numeric value indicating the position of the rightmost unfrozen column

visible in the browse display. If all columns are frozen, the value contains zero,

tb:COLCOUNT otherwise.

retN = tb:ROW ([expL1])

Returns row coordinate of currently selected cell, comparable to ROW() function.

<expL1> is the pixel specification for GUI. If .T., the return value is in pixel. If .F.,

<retN> is in row/column. If <expL2> is not given or is NIL, current SET PIXEL is

considered.

tb:ROWCACHE Access/Assign

Numeric value specifying the size of the browse cache. If this value is greater than

the number of visible rows (tb:RowCount), the cache is filled at once and the cached

area can be scrolled by mouse using the vertical scrollbar or the Cursor Up/Down

key. The default cache size is the number of visible rows. You may set the

tb:RowCache higher (e.g. to 10 * tb:RowCount) to be able to skip faster thru the

database via PgDn or PdUp key. Applies in GUI mode only, ignored otherwise.

Note: for a small database (or an array), you may specify
 tb:RowCache := reccount() -or- tb:RowCache := LEN(myArray)

to be able to scroll thru the whole table (database or array) via the vertical scrollbar.

Keep in mind, all the data from the RowCache size must be hold in memory, so

consider the memory use and the Tbrowse speed for refreshing of large tables (with

thousands or millions of records); usually only the current <RowCache> slice of the

table needs to be refreshed until the next table slice is read on user request (e.g. by

the PgUp/PgDn key press).

tb:ROWCOUNT Access

Contains a numeric value indicating the number of data rows visible in the TBROWSE

display. Heading and footing lines are not included in that value.

OBJ 282

tb:ROWPOS Access/Assign

Contains a numeric value indicating the data row where the TBROWSE cursor is

currently located. The valid range is 1.. ..tb:ROWCOUNT.

[tc =] tb:SCROLLLEFT ([expL1])

Scroll the view to left, if possible. If <expL1> is .T. or NIL or not given, the leftmost

column is "protected", i.e. displayed at rightmost position after scroll, if possible.

Otherwise the new rightmost position is the old leftmost visible column +1.

[tc =] tb:SCROLLRIGHT ([expL1])

Scroll the view to right, if possible. If <expL1> is .T. or NIL or not given, the rightmost

column is "protected", i.e. displayed at leftmost position after scroll, if possible.

Otherwise the new leftmost position is the old rightmost visible column +1.

tb:SELECTEDCOL Access/Assign

Contains currently selected column (1..n). Equivalent to tb:COLPOS but is available

also after exit from tb:EXEC(). This value is not set by the class self, but by the handler

(per default tbrowsedbhand.prg or tbrowsehand.prg).

tb:SELECTEDROW Access/Assign

Contains currently selected row (1..nBuff). Equivalent to tb:ROWPOS but is available

also after exit from tb: EXEC(). This value is not set by the class self, but by the handler

(per default tbrowsedbhand.prg or tbrowsehand.prg).

tb:SELECTEDRECNO Access/Assign

Contains currently selected record number or the array index (1..n). Equivalent to

Recno() or tb:UserArrayPos but is available also after exit from tb: EXEC(). This value

is not set by the class self, but by the handler (per default tbrowsehand.prg or

tbrowsedbhand.prg).

tb:SELECTEDVALUE Access/Assign

Contains the value of currently selected item. Equivalent to tb:Data() but is available

also after exit from tb:Exec(). This value is not set by the class self, but by the handler

(per default tbrowsehand.prg or tbrowsedbhand.prg).

 OBJ 283

[tc =] tb:SETCOLUMN (<expN1>, <expO2>)

Replaces the column <expN1> with the TBCOLUMN object <expO2>. The returned

value of <tc> is the old TBCOLUMN object.

[tc =] tb:SETFOCUS (<expL>)

Considered and used in @..GET...Tbrowse only in getsys.prg

[<expB>] := tb:SETKEY (<expN>, [<expB>])

Set/get a code block <expB> associated to Inkey value <expN> for this Tbrowse

object. It is similar to standard SET KEY command or SetKey() function, but

tb:SetKey() re-direction do not interferes previously set SET KEY. It is used in default

Tbrowse handlers (tbrowsehand.prg and tbrowsedbhand.prg) or handled by

tb:ApplyKey() method. This allows to keep and handle SET KEY values in your

program independent of Tbrowse handling. The codeblock receives 2 parameters,

current Tbrowse object and key value. The code block is evaluated by tb:ApplyKey().

The code block should return:

Constant Value Meaning

TBR_EXIT -1 User request for the browse to lose input focus and to exit

Tbrowse, ignores corresp. SET KEY

TBR_CONTINUE 0 Code block associated with <nExp> was evaluated, do

not process default handler action, nor previously set SET

KEY

TBR_EXCEPTION 1 Evaluate corresponding SET KEY if set, the handler

should then process default key action

TBR_DEFACTION 2 The handler should process default key action, but

ignores corresponding SET KEY if such set.

The TBR_* constants are available in tbrowse.fh include file. If the code block returns

invalid value, tb:ApplyKey() returns TBR_CONTINUE. You may retrieve the associated

codeblock by myblock := tb:SETKEY(key) or delete previous setting by

tb:SETKEY(key,NIL). The standard Tbrowse SetKey() actions can be set by

tb:SetKeyDef() method, and are set in TbrowseArr() and TbrowseDb() functions by

default.

[<expB>] := tb:SETKEYDEF([<expL>])

Sets default tb:SetKey() redirections. If <expL> is not given, following SET KEY

redirection is set for Tbrowse actions (same as Clipper 5.3):

oTb:SetKey(K_DOWN, {|oTb,key| oTb:Down(), TBR_CONTINUE})
oTb:SetKey(K_END, {|oTb,key| oTb:End(), TBR_CONTINUE})
oTb:SetKey(K_CTRL_PGDN, {|oTb,key| oTb:GoBottom(),TBR_CONTINUE})
oTb:SetKey(K_CTRL_PGUP, {|oTb,key| oTb:GoTop(), TBR_CONTINUE})
oTb:SetKey(K_HOME, {|oTb,key| oTb:Home(), TBR_CONTINUE})
oTb:SetKey(K_LEFT, {|oTb,key| oTb:Left(), TBR_CONTINUE})

OBJ 284

oTb:SetKey(K_PGDN, {|oTb,key| oTb:PageDown(),TBR_CONTINUE})
oTb:SetKey(K_PGUP, {|oTb,key| oTb:PageUp(), TBR_CONTINUE})
oTb:SetKey(K_CTRL_END, {|oTb,key| oTb:PanEnd(), TBR_CONTINUE})
oTb:SetKey(K_CTRL_HOME, {|oTb,key| oTb:PanHome(), TBR_CONTINUE})
oTb:SetKey(K_CTRL_LEFT, {|oTb,key| oTb:PanLeft(), TBR_CONTINUE})
oTb:SetKey(K_CTRL_RIGHT, {|oTb,key| oTb:PanRight(),TBR_CONTINUE})
oTb:SetKey(K_RIGHT, {|oTb,key| oTb:Right(), TBR_CONTINUE})
oTb:SetKey(K_UP, {|oTb,key| oTb:Up(), TBR_CONTINUE})
oTb:SetKey(K_ESC, {|oTb,key| TBR_EXIT })

If <expL> is .T., all above key redirections are set to
 oTb:SetKey(K_..., {|oTb,key| TBR_DEFACTION})

which triggers default handler action but ignores previous SET KEY, ON KEY and SET

FUNCTION redirections. Set by default in TbrowseArr() and TbrowseDb() functions. If

<expL> is .F., all tb:SetKey() redirections are removed. See tb:ApplyKey() for

constants and code block evaluation.

tb:SKIPBLOCK Access/Assign

Contains a code block executed in response to repositioning the data using the

tb:DOWN(), tb:UP(), tb:PAGEDOWN(), tb:PAGEUP() methods. Two arguments are

passed to the block: <nSkip> and <oSelf>. The <nSkip> is numeric argument

representing the number of records to be skipped. A positive value means skip

forward, and a negative value means skip backward. A zero argument does not

indicate a repositioning request, but rather that a data refresh of the current record is

required. The <oSelf> is the Tbrowse object self which can be e.g. passed to the UDF

function, instead of declaring the object public.

Assigning the tb:SKIPBLOCK is mandatory and must be done latest before any

Tbrowse movement and/or before using stabilizing via tb:STABILIZE() or

tb:FORCESTABLE().

The code block body typically calculates a new array index or executes a user defined

function performing SKIP <arg> for a database movement (predefined when using

TBROWSEDB()). The block must return the number of rows (positive, negative, or

zero) actually skipped. If the value returned is not the same as the code block

argument <arg>, the TBROWSE object assumes that the skip operation encountered

the beginning or end of file or of the array boundary. See examples in Chapter 4 and

in functions TBROWSENEW(), TBROWSEDB() and TBROWSEARR().

Compatibility note: Clipper passes only one argument to the code block. But when

you specify (and not use) the tbrowse object as 2nd parameter, your source remain

backward compatible to Clipper.

[retL =] tb:STABILIZE ()

Performs incremental stabilization. Each time this message is sent, some part of the

stabilization process is performed. Stabilization is performed in increments so that it

can be interrupted by a keystroke or another asynchronous event. If the TBROWSE

object is already stable, the method returns TRUE and the tb:STABLE instance is also

 OBJ 285

set to TRUE. Otherwise, a FALSE value indicates that further stabilize messages

should be sent. The TBROWSE is stable when all data has been retrieved and

displayed, the data pointer has been repositioned to the record corresponding to the

browse cursor, and the current cell has been highlighted. For more details see

Chapter 3.

tb:STABLE Access/Assign

Contains a logical value indicating whether the TBROWSE object is stable, when

TRUE. The browse is considered stable when all data has been retrieved and

displayed, the data source has been repositioned to the record corresponding to the

browse cursor, and the current cell has been highlighted. When a data movement

method is requested, the value is set to FALSE. The invocation of tb:FORCESTABLE()

or multiple invocation of tb:STABILIZE() will set the value to TRUE.

tb:TIMEOUT Access/Assign

Set or get time-out value in seconds. If you assign numeric value between 1 and

86399 (= 1 sec to 24 hours), the tbrowse handler will exit browsing (similar to ESC

key) when a key press (or mouse press) did not occurred within this period since

tbrowse start, or last key/mouse press. Default value is 0 which disables time-out. It

is used in the standard Tbrowse handler <FlagShip_dir>/system/tbrowsehand.prg

and tbrowsedbhand.prg.

tb:TRIM Access/Assign

Logical value. If TRUE, sizes columns of character fields to trimmed length of it

largest value. This will usually display more columns on the screen at a time,

especially with long, only partially filled fields. Applies in GUI mode only, ignored

otherwise. The default is .F. See also Tc:Width for additional tuning.

[tb =] tb:UP ()

Moves the TBROWSE cursor up one row. If the cursor is already on the top row, the

display is scrolled down and a new row is brought into view. If the data pointer is

already at the logical top-of-data and the browse cursor is in the first row, tb:HITTOP

instance is set to TRUE.

tb:USERARRAY Access/Assign

Assign (or get) an two-dimensional data-array for TbrowseArr(). It is equivalent to

<expA10> parameter of TbrowseArr(). The number of elements in each row (i.e. the

size of sub-arrays) must be equivalent and the element type (C/N/L/D) in each column

must not change. At least one row and column {{"single"}} is required. You may format

the column data by TbColumn properties, e.g. tc:Picture, tc:ColorBlock etc.

OBJ 286

Example:

oTbr:UserArray := {{"row1col1", 1, "row1col3", .T.}, ;
 {"row2col1", 2, "row2col3", .F.}, ;
 {"row3col1", 3, "row3col3", .T.} }

tb:USERARRAYPOS Access/Assign

Assign (or get) current row of array, used in tbrowsehand.prg handler.

tb:VISIBLE Access

Returns true when Tbrowse is visible, false if hidden.

tb:VSCROLLBAR Assign

Change visibility of vertical scrollbar in GUI mode, default s true.

 OBJ 287

TbColumn Class

A TBCOLUMN objects contains all the information required to specify a TBROWSE column.

Since TBCOLUMN is used only at the conclusion of TBROWSE, this class has no methods, but

only instance variables.

Usually one or more newly created TBCOLUMN objects are assigned to a FlagShip variable or

directly to the TBROWSE using the tb:ADDCOLUMN() or tb:INSERTCOLUMN() method.

A new TBCOLUMN object is created by TBCOLUMNNEW() and then contains the minimal

column information. Additional settings can be specified using the TBCOLUMN instances.

Note that assigning the TBCOLUMN object to TBROWSE will assign the address of the object

only, similar to assigning arrays using the = operator. Therefore, additional changes on the

TBCOLUMN variable will also automatically apply to TBROWSE until a new object is assigned

to that column variable.

After the TBCOLUMN object holding variable (the 'tc' below) is assigned to TBROWSE, you may

re-use the same named variable to create another column with TBCOLUMNNEW(), e.g.

 LOCAL tb, tc, cii
 USE mydbf
 tb := TBROWSEDB(1,1, maxrow()-2, maxcol()-2)
 FOR ii = 1 TO FCOUNT()
 if ii == 1 // first column is read-only
 cii := ltrim(ii) // required below
 tc := TBCOLUMNNEW (FieldName(ii), {|| FieldGet(&cii) })
 else // other columns are editable
 tc := TBCOLUMNNEW (FieldName(ii), FieldBlock(FieldName(ii)))
 endif
 tb:AddColumn(tc)
 // ? EVAL (tc:BLOCK) // optinal: display data
 NEXT
 tb:ReadOnly := .F. // allow editing
 tb:Exec()

See also <FlagShip_dir>/system/dbedit.prg and ../examples/tbrowse_*.prg for examples of

the implementation.

OBJ 288

TbColumnNew ()

Syntax 1:

obj = TBCOLUMNNEW (expC1, expBL2)

Syntax 2:

obj = TBCOLUMN { expC1, expBL2 }

Purpose:

Creates a new TBCOLUMN object initialized by the arguments supplied .

Arguments:

<expC1> is a string containing the header text displayed by TBROWSE at the top of

this column. <expC1> is stored into the tc:HEADING instance. Multi-line headers

(separated by CHR(10) or ";" within the text) are supported by default in GUI

same as in Terminal i/o, you however may change it by oTbrowse:HeadStyle()

or globally - see Tuning section in the Tbrowse class description.

<expB2> is a code block returning the current value of the column data. TBROWSE

does not pass any argument to the code block. <expB2> is stored into the

tc:BLOCK instance.

<expL2> can also be logical TRUE which advises TbColumn to generate a skip block

for an array access.

Returns:

<obj> is the newly allocated TBCOLUMN object, usually assigned to a regular

FlagShip variable or directly to TBROWSE using e.g. tb:ADDCOLUMN().

Description:

TBCOLUMNEW() creates a new object, used for specifying the displayed TBROWSE

data. An additional setting of the column can be assigned using the instance

variables.

Prior to using the TBROWSE object, one or more TBCOLUMNs must be specified and

assigned to TBROWSE.

Example 1:

Used in the example for TBROWSENEW() function, Tbrowse class

 FUNCTION browdircolumn (brow, dir)
 LOCAL col[5], ii

 col[1] := TBCOLUMNNEW ("File name", {|| dir[elem,1] })
 col[2] := TBCOLUMNNEW ("Size", {|| dir[elem,2] })
 col[3] := TBCOLUMNNEW ("Date", {|| dir[elem,3] })
 col[4] := TBCOLUMNNEW ("Time", {|| dir[elem,4] })
 col[5] := TBCOLUMNNEW ("Attrib", {|| dir[elem,5] })

 * Specify different color attributes for column cell, see
 * color attributes in brow:COLORSPEC in TBCOLUMNNEW():
 * brow:COLORSPEC := "W/B, W+/B, BG+/W, GR+/B, R+/B, N/W"

 OBJ 289

 * - Databases are displayed yellow, .prg sources bright
 * - File size > 50 KB bright, > 1 MB yellow
 * - Date older than 2 months bright white
 * - Executables (x attrib) are yellow, r/o white, dirs red

 col[1]:COLORBLOCK := {|x| IF(".DB" $ UPPER(x), {4,6}, ;
 IF(".prg" $ x, {2,6}, {1,6}))}
 col[2]:COLORBLOCK := {|x| IF(x > 1000000, {4,3}, ;
 IF(x > 50000, {2,3}, {1,3}))}
 col[3]:COLORBLOCK := {|x| IF(DATE()-x > 60, {2,3}, {1,3})}
 col[5]:COLORBLOCK := {|x| IF(LEFT(x,1) == "d", {5,3}, ;
 IF("x" $ x, {4,3}, ;
 IF(SUBSTR(x,2,1)!="r", {1,3},{2,3})))}

 col[1]:WIDTH := 10 // adjust column width
 col[2]:WIDTH := 4
 FOR ii := 1 TO LEN(dir)
 col[1]:WIDTH := MAX(col[1]:WIDTH, StrLen2col(dir[ii,1]))
 col[2]:WIDTH := MAX(col[2]:WIDTH, StrLen2col(Ltrim(dir[ii,2])))
 NEXT
 col[1]:FOOTING := "unsorted" // Preset footing msg

 FOR ii = 1 to 5 // Assign columns to TBROWSE
 col[ii]:DEFCOLOR := {1, 2 }
 brow:ADDCOLUMN (col[ii])
 NEXT
 RETURN

Example 2:

See also the <FlagShip_dir>/system/dbedit.prg file for a complete example of the

TBROWSE and TBCOLUMN usage.

Classification:

programming

Class:

TBCOLUMN class, prototyped in <FlagShip_dir>/include/tbrclass.fh

Compatibility:

Available in FS4, C5 and VO. The alternative syntax 2 and the possibility of inheriting

it into an own subclass is available in FlagShip only.

Related:

TBROWSENEW(), TBROWSEDB()

OBJ 290

TbColumn Class Index

Class TbColumn

Inherits from: -

Inherited by: -

Class prototype: tbrclass.fh

Defines: tbrowse.fh

Alignment ACC/ASS Set/get the column alignment

Block ACC/ASS Code block that retrieves the column data

ColorBlock ACC/ASS Code block managing the displayed cell color

ColPos ACCESS Get current column number

_ColPos() METHOD Set column position (internal)

ColSep ACC/ASS Column separator character

Data ACC/ASS Get/set current cell data

DefColor ACC/ASS Array managing required color attribute

FootColor ACC/ASS Set/get the footing color

Footing ACC/ASS String displayed at the column footing

FootSep ACC/ASS Column footer separator character

GuiColorBlock ACC/ASS Code block managing the GUI cell color

GuiDefColor ACC/ASS Array managing required GUI color attribute

GuiFontBlock ACC/ASS Set/get the GUI Font code block

HeadColor ACC/ASS Set/get the header color

Heading ACC/ASS String displayed in the column header

HeadSep ACC/ASS Column heading separator character

MemoPos ACC/ASS Object specifying the position of MemoEdit()

Parent ACCESS Get parent (Tbrowse) object

Parent() METHOD Set parent object (internal)

Picture ACC/ASS Set/get the picture string for column formatting

PostBlock ACC/ASS For @..Get/Read

PreBlock ACC/ASS For @..Get/Read

ReadOnly ACC/ASS Are fields of this column editable?

SetPtrEx() METHOD internal

SetStyle() METHOD internal

Width ACC/ASS Set/get the column width in chars

WidthPixel ACC/ASS Set/get the column width in pixel

WidthVisible ACC/ASS Set/get the visible column width in pixel

 OBJ 291

TbColumn Class Properties

tc:BLOCK Access/Assign

Contains a code block that retrieves data for the column, equivalent to the <expB2>

argument of TBCOLUMNNEW(). Any code block is valid. No block arguments are

supplied when the block is evaluated. The code block must return the appropriate

data value for the column. Example:

 USE mydbf
 tb := TBROWSEDB()
 FOR ii = 1 TO FCOUNT()
 tc := TBCOLUMNNEW (FIELDNAME(ii), FIELDBLOCK (FIELDNAME(ii)))
 tb:ADDCOLUMN (tc)
 ? EVAL (tc:BLOCK)
 NEXT

tc:CARGO Access/Assign

Contains any user data of any type, to store column information retrieved later in the

program using the TBROWSE, for example:

 USE mydbf
 tb := TBROWSEDB()
 FOR ii = 1 TO FCOUNT()
 tc := TBCOLUMNNEW (FIELDNAME(ii), FIELDBLOCK (FIELDNAME(ii)))
 tc:CARGO := "Text for the column " + LTRIM(STR(ii))
 tb:ADDCOLUMN (tc)
 NEXT
 // later, executing TBROWSE
 col := tb:GETCOLUMN (tb:COLPOS)
 @ MAXROW(), 0 CLEAR
 IF col:CARGO != NIL
 @ MAXROW(), 0 SAY col:CARGO
 ENDIF

tc:COLORBLOCK Access/Assign

Contains an optional code block that determines the color of the displayed data cell.

If present, the block is evaluated every time a new value is retrieved in TBROWSE via

the tc:BLOCK. The TBROWSE passes the new data element as an argument to the

tc:COLORBLOCK. The body of the code block must return an array with two or three

numeric elements, specifying the index position of the required color attribute accor-

ding to the tb:COLORSPEC setting. The first element (color pair index) is used to

display unselected cells, the second element specifies color pair for selected cell.

The 3rd element, if present and if > 0, is used to paint all unselected cells in current

row by this color. For example, to display all negative data red, positive data white

and values greater than 1000 yellow/blue, use:

OBJ 292

 brow:COLORSPEC := "W/B, N/W, W+/B, R+/B, GR+/B"
 tc := TBCOLUMNNEW ("Price", FIELDBLOCK ("PRICE"))
 #ifdef INLINE_CODED
 tc:COLORBLOCK := {|data| IF (data < 0, {4,2}, ;
 IF (data > 1000, {5,2}, {3,2})) }
 #else
 tc:COLORBLOCK := {|data| mydisplay(data) }
 #endif
 brow:ADDCOLUMN (tc)

 #ifndef INLINE_CODED
 FUNCTION mydisplay(data)
 LOCAL out[2]
 IF data < 0
 out[1] = 4 // 4th element in DEFCOLOR = "R+/B" unsel
 ELSEIF data > 1000
 out[1] = 5 // 5th element in DEFCOLOR = "GR+/B" unsel
 ELSE
 out[1] = 3 // 3th element in DEFCOLOR = "W+/B" unsel
 ENDIF
 out[2] = 2 // 2nd element in DEFCOLOR = "N/W" selected
 RETURN out
 #endif

To specify cell colors for GUI mode, use tc:GUICOLORBLOCK instead. See

<FlagShip_dir>/examples/tbrowse_ar.prg for complete example, including use of 3rd

array element for highlighting of the whole line.

tc:COLSEP Access/Assign

Contains an optional string that defines the character(s) drawn to the left of this

column, if a left TBROWSE column exists. If tc:COLSEP is not specified, the default

tb:COLSEP is used by TBROWSE. Applies for terminal i/o mode only, ignored

otherwise. Example:

 element := 1
 column := TBCOLUMNNEW ("Second", {|| myarray[element, 2])
 column:COLSEP := " : "
 brow:INSCOLUMN (2, column)

tc:DATA Access/Assign

retVal := tc:DATA (access) returns current cell data and is equivalent to executing

retVal := EVAL(tc:BLOCK). tc:DATA := value (assign) sets current cell data and is

equivalent to executing EVAL(tc:BLOCK, value).

tc:DEFCOLOR Access/Assign

Contains a numeric array with two elements, specifying the index position of the

required color attribute according to tb:COLORSPEC to display this column. The first

element specifies the attribute index of the normal output (including headings,

footings and the column data), while the second element the color index highlighted

 OBJ 293

output of the TBROWSE cursor which are in these columns. The default setting is {1,

2}, which selects the "normal" and "selected" color pair of the SETCOLOR() attributes,

the default for tb:COLORSPEC. Example:

 brow:COLORSPEC := SETCOLOR() + "W/B, N/W, W+/B, R+/B, GR+/B"
 col := TBCOLUMNNEW ("Name", FIELDBLOCK ("NAME"))
 col:DEFCOLOR := { 10, 7 } // "GR+/B" and "N/W"
 brow:ADDCOLUMN (col)

tc:FOOTING Access/Assign

Contains a string displayed at the footing of this column. The use of tc:FOOTSEP to

separate the footing text from the column data is also recommended. Applies for

terminal i/o mode only, ignored otherwise. See next example.

tc:FOOTSEP Access/Assign

Contains a character or string which specifies the column footing separator. The

string is displayed to the left of the current column, if it is not the first one. The last

character of the string is used repetitively for the footing line underlining the column.

If tc:FOOTSEP is not specified or contains a null-string "", the default tb:FOOTSEP is

used by TBROWSE. Applies for terminal i/o mode only, ignored otherwise. For

example:

 tbr:FOOTSEP := "-+-"
 tbr:COLSEP := " | " // xxxxxxxxxxx?:!xxxxxxxxx | xxxxx
 col:FOOTING := "Column 2" // xxxxxxxxxxx?:!xxxxxxxxx | xxxxx
 col:COLSEP := "?:!" // -----------.:!=========-+------
 col:FOOTSEP := ".:!=" // Column 2

tc:GUICOLORBLOCK Access/Assign

Same as tc:COLORBLOCK but is used in GUI i/o mode to select colors from the

oTbrowse:GUICOLORSPEC array of color pairs. It contains an optional code block that

determines the color of the displayed data cell. If present, the block is evaluated every

time a new value is retrieved in TBROWSE via the tc:BLOCK. The TBROWSE passes

the call value as argument to the tc:GUICOLORBLOCK. The code block body must

return array with two or three numeric elements, specifying an index position of the

required color attribute according to the tb:GUICOLORSPEC setting, zero signals to

use default color. The first element (i.e. color pair index) is used to display unselected

cells, the 2nd element specifies color pair for selected cell. The 3rd element, if

present, is used to paint unselected cells in current row. For example, to display all

unselected data black on while (except in column 2 which is red on yellow), highlight

the current row by white on green and the selected cell by yellow/red, use (see full

source in <FlagShip_dir>/examples/tbrowse_ar.prg):

 oBr:GuiColorSpec := {"N/W+", ; // 1: black on white
 "GR+/R+", ; // 2: yellow on red
 "#CC0000/#E5F902", ; // 3: red on yellow
 "W+/G" } // 4: white on green

OBJ 294

 for ii := 1 to len(myArray[1])
 oTbcol := TbColumnNew(aHeader[ii], .T.) // create TbColumn
 if ii == 2 // for 2nd column:
 oTbcol:GuiColorBlock := {|val| {3,2,4}} // = R/Y, Y/R, W/G
 else // other columns:
 oTbcol:GuiColorBlock := {|val| {1,2,4}} // = B/W, Y/R, W/G
 endif
 oBr:AddColumn(oTbcol) // assign TbColumn to Tbrowse
 next

To specify cell colors for Terminal i/o mode, use tc:COLORBLOCK instead.

tc:HEADING Access/Assign

Contains a string displayed at the top of this column over the heading separator (line),

if tc:HEADSEP is given. Equivalent to the argument <expC1> of TBCOLUMNNEW().

See also example there.

tc:HEADSEP Access/Assign

Contains a character or string which specifies the column heading separator. The

string is displayed left of the current column, if it is not the first one. The last character

of the string is used repetitively for the heading line displayed over the column. If

tc:HEADSEP is not specified or contains a null-string "", the default tb:HEADSEP is

used instead. See example in tc:FOOTSEP and in TBROWSENEW(). Applies for

terminal i/o mode only, ignored otherwise.

tc:MEMOPOS Access/Assign

Contains an object of Rectangle class (top,left,bottom,right) specifying the position of

MemoEdit() for editing of MEMO fields. When NIL, the position is calculated

automatically.

tc:PICTURE Access/Assign

Optional string containing the "picture" for formatting the column data. Same as

Picture template of @..SAY command or Transform() function. If not available, the

default formatting in dependence on the data type and the column width is used.

tc:READONLY Access/Assign

Logical value specifying that the fields of this column can or cannot be edited. The

default value is FALSE, the fields are editable. See also oTbrowse:READONLY for

global setting.

 OBJ 295

tc:WIDTH Access/Assign

Contains a numeric value specifying the display width for the column. If tc:WIDTH is

not specified, the column width is calculated as MAX (LEN(tc:HEADING), LEN

(tc:FOOTING), LEN(first column data)). If tc:WIDTH is set, all headings, footings and

data will be truncated to the specified length. Only character data may be truncated,

all other data types expand the column width. In GUI, the WIDTH specifies the minimal

column width to be displayed. When the real column size exceeds it setting, the

WIDTH is automatically increased. When tc:WIDTH is not set, Tbrowse tries to display

as many data as possible in the available space. It calculates the column width for

every displayed page and if this increases, it automatically update the visible column

size. If the row size is larger than the available Tbrowse width, a horizontal scroll bar

is displayed. See also tb:Trim for additional width tuning.

tc:WIDTHPIXEL Access/Assign

Same as tc:WIDTH but returns or assigns values in pixel instead of the cols width.

OBJ 296

DataServer and DBserver Class

In FlagShip, the database and index access is performed using a replaceable database driver

(see section RDD). The high-level database and index functions, described in sections CMD

and FUN, invoke methods from the DBSERVER class.

DATASERVER is a "pseudo-class" with predefined method names only, to ensure a proper

hybrid use of the procedural vs. RDD object access (see more below). This class should be

inherited from other RDDs, which then define their own instances and the required, supported

methods. The DataServer class prototype is specified in the stdclass.fh file.

The DBSERVER and DBFIDX classes also inherit the general DATASERVER class. DBSERVER

is compatible to CA-VisualObjects, but not available in Clipper. Since the use of the

DBSERVER, DBFIDX or any other RDD inheriting the general DATASERVER class is the same,

the DBSERVER stands in the following description also for all other similar RDDs.

FlagShip fully supports hybrid database operation for all RDDs created (inheriting) from the

DATASERVER, DBSERVER or DBFIDX class, as opposed to VO. Hybrid operation means that

command and function calls are fully interchangeable with invoking object methods for the

same database access. Invoking the database command or function is usually the more

comfortable programming way, but you may use the object oriented programming style directly

as well.

Same as the high-level database commands and functions operate on the currently selected

working area (see LNG.4.3 and CMD.SELECT), the objects of a DataServer or DBserver class

perform operations on an automatically opened working area. Therefore, for any open

database (and its associated memo fields and indexes), a separate DBserver object exists,

created automatically with the USE command, DBUSEAREA() function, or by instantiating the

DBserver object.

In FlagShip, as opposed to VO, you may open a database in the current (or a new) working

area by:

• the USE command or the DBUSEAREA() function, along with the optional RDD driver name,

• creating an object variable with the DBSERVERNEW() creator function or the DBSERVER {..}

instantiation (see LNG.2.11.1). You may also use the appropriate RDD creator function or

instantiation, e.g. DBFIDXNEW(), CB4CDXNEW() or CB4CDX {..} instead. Note, that the

selection of a NEW working area is the default there, when not specified otherwise.

To select the required working area, you may alternatively use

• the SELECT command or the DBSELECTAREA() function,

• the object variable itself, created by the DBSERVERNEW() function or the DBSERVER{}

instantiation, • the object variable of a specified working area, retrieved by the DBOBJECT() function.

You may interchangeably access the database fields by:

• specifying the field name itself (see LNG.4.2),

• specifying the field name prefixed with an alias (see LNG.4.4),

• the ordinal field number using FIELDNAME() and FIELDPOS() functions,

 OBJ 297

• invoking the FIELDGET() and FIELDPUT() functions,

• using the object variable, send operator and the field name,

• using the object variable, send operator and one of the methods described below.

Performance hint: the fastest access to a database field is performed by using the field name

in the current WA directly (since the addressing is already resolved at compile-time), followed

by alias-><field>, the FIELDGET() function or method, then alias->FIELDGET(), the use of

object:<field>, and a <field> of a related database.

As with all objects, using TYPED variables (of the known RDD or DATASERVER type) will speed

up the application significantly, since already the FlagShip compiler will resolve the object

addresses. Otherwise, the run- time system has to search for the class property name for any

access to it.

OBJ 298

1. Scope and Filters

When using procedural programming, several database commands have clauses to define the

scope of records of the database on which to execute. These clauses are FOR, WHILE, ALL,

REST, NEXT <nRecords>, RECORD <nRecord> and are described in section CMD.Notation.

In the DBserver class, three instances (oRdd:FORBLOCK, oRdd:WHILEBLOCK and

oRdd:SCOPE) are available for defining a global scope. When none of the scoping arguments

of a particular method (e.g. oRdd:APPENDDB() etc.) are specified, the global DBserver

instances are used by default. This means, the general scope applies whenever one of the

bulk processing methods is invoked without an explicit scope.

The <for> argument of some DBserver methods, and the oRdd:FORBLOCK instance specify,

that the method will be repeatedly executed for all records according to the <scope>. The

condition is stored as a code block, or converted to a code block if given as a string. If the

global condition is not required, set it to NIL, the default value.

The <while> argument of some DBserver methods, and the oRdd:WHILEBLOCK instance

specify that the repetitive execution of the method stops when a record does not meet the

condition. The condition is stored as a code block, or converted to a code block if given as a

string. If the global condition is not required, set it to NIL, the default value.

The <scope> argument of the DBserver methods, and the oRdd:SCOPE instance specify

partial execution of the method or a range for the for/while condition. The syntax differs slightly

from the command notation:

Scope content Value Description

DBSCOPEALL .F. The scope is ALL records, or REST with WHILE.

DBSCOPEREST .T. The scope is the remaining records starting from the current

position.

any number > 0 The scope is NEXT nRecords

set to NIL The scope is ALL records, or REST with WHILE.

The above constants are specified in the #include "rddsys.fh" file. Note, that there is no

counterpart to the RECORD <nRecord> command scope, since it is very seldom used. If

required, you may use the equivalent FlagShip command or function, or issue

oRdd:GOTO(nRecord) and set the <scope> to 1.

Remember to restore/reset the general scope and conditions when they are not needed any

more. The scope is persistent and applies to all scope- based methods until reset to NIL or via

the oRdd: CLEARSCOPE() method.

Filters: in addition to the global scope and conditions, two global filters are available, SET

FILTER or oRdd:FILTER and the SET DELETED flag. These filters are considered on any data

movement (except GOTO), even in the repetitive execution of methods according to the given

or general scope.

 OBJ 299

2. Summary of Properties

The following table summarize properties of the DATASERVER and DBSERVER class. See their

availability in the different RDDs in the section RDD. You may also check the selected RDD

driver via the ISOBJPROPERTY (oRdd, <name>, <type>, 1) function.

DATASERVER Name Type Descript, CMD/FUN equival.

Alias Access,Assign = ALIAS()

AliasSym Access symbol of the alias

Append() Method = APPEND BLANK

AppendDB() Method = APPEND FROM

AppendDelimited() Method = APPEND FROM ... DELIM

AppendSDF() Method = APPEND FROM ... SDF

AsString() Method name of the data server

Average() Method = AVERAGE

Axit() Method internal, clean up

BlobDirectExport() Method export bin. large object to file

BlobDirectGet() Method retrieve data from blob file

BlobDirectImport() Method import bin. large obj. from file

BlobDirectPut() Method write data to blob file

BlobExport() Method write data to blob file

BlobGet() Method read the blob data

BlobImport() Method copy a blob file

BlobRootGet() Method read the blob root area

BlobRootLock() Method lock root area of the blob file

BlobRootPut() Method write the blob root area

BlobRootUnlock() Method unlock root area of blob file

BOF Access = BOF()

ClearFilter() Method clears RDD global filter

ClearIndex() Method = CLOSE INDEX

ClearLocate() Method clears LOCAL condition

ClearRelation() Method = SET RELATION TO

ClearScope() Method clears RDD global scope

Close() Method = CLOSE

Commit() Method = DBCOMMIT()

ConcurrencyControl Access,Assign similar to SET AUTOLOCK

Continue() Method = CONTINUE

CopyDB() Method = COPY TO

CopyDelimited() Method = COPY TO ... DELIM

CopySDF() Method = COPY TO ... SDF

CopyStructure() Method = COPY STRUCT TO

Count() Method = COUNT

CreateDB() Method = DBCREATE()

CreateIndex() Method = INDEX ON ... TO

CreateOrder() Method = ORDCREATE()

OBJ 300

DataField() Method = FIELDGET()

DBStruct() Method = DBSTRUCT()

Delete() Method = DELETE

DeleteAll() Method = DELETE ALL

Deleted Access = DELETED()

DeleteOrder() Method = ORDDESTROY()

Driver Access name of the RDD driver

EOF Access = EOF()

ErrInfo Access error obj of previous error

Error() Method error object / handler

Eval() Method = DBEVAL()

FCount Access = FCOUNT()

FieldGet() Method = FIELDGET()

FieldGetFormatted() Method formatted FIELDGET()

FieldHyperLabel() Method hyperlabel of the field

FieldInfo() Method = FIELDxxx()

FieldName() Method = FIELDNAME()

FieldPos() Method = FIELDPOS()

FieldPut() Method = FIELDPUT()

FieldSpec() Method object of the field

FieldStatus() Method status of the field operation

FieldSym() Method name of a field from symbol

FieldValidate() Method validate accord. to field obj

FileSpec Access

Filter Access,Assign = DBSETFILTER()

FLock() Method = FLOCK()

ForBlock Access,Assign global RDD 'for' block

Found Access = FOUND()

GetArray() Method multiple FIELDGET()s

GetArrFields() Method multiple FIELDGET()s

GetLocate() Method get the LOCATE code block

GetLookupTable() Method FIELDGET()s of several rec

GoBottom() Method = GO BOTTOM

GoTo() Method = GOTO

GoTop() Method = GO TOP

Header Access = HEADER()

IndexCheck Access = INDEXCHECK()

IndexCount Access = INDEXCOUNT()

IndexExt Access = INDEXEXT()

IndexKey Access = INDEXKEY()

IndexKey() Method = INDEXKEY()

IndexLock Access locks the index

IndexOrd() Method = INDEXORD()

Info() Method various infos about the RDD

Init() Method = USE ... or DBUSEAREA()

IsRelation Access,Assign activate/deactivate relations

Join() Method = JOIN

 OBJ 301

LastRec Access = LASTREC(), RECCOUNT()

Locate() Method = LOCATE

LockCurrentRecord() Method = RLOCK()

LockSelection() Method multiple RLOCK()s

LUpdate Access = LUPDATE()

Name Access = RDDSETDEFAULT()

NoiVarGet() Method exception Access handler

NoiVarPut() Method exception Assign handler

NoMethod() Method exception Method handler

Notify() Method event handler

OrderBottomScope Access,Assign control value of bottom

OrderDescend() Method similar to DESCEND clause

OrderInfo() Method various infos about the order

OrderIsUnique() Method similar to UNIQUE clause

OrderKeyAdd() Method add a key into order

OrderKeyCount() Method no of keys in order

OrderKeyDel() Method delete key in order

OrderKeyGoTo() Method move to record no

OrderKeyNo Access,Assign logical record number

OrderKeyNo() Method logical record number

OrderKeyVal Access = &(INDEXKEY())

OrderScope() Method boundary scope on order

OrderSkipUnique() Method skip unique in order

OrderTopScope Access,Assign control value of top

Pack() Method = PACK

QuickFieldGet() Method = FIELDGET()

QuickFieldPut() Method = FIELDPUT()

RDDInfo() Method various infos about RDD

RDDName Access = RDDSETDRIVER()

ReadOnly Access status of USE open

Recall() Method = RECALL

RecallAll() Method = RECALL ALL

RecCount Access = LASTREC(), RECCOUNT()

RecNo Access,Assign = RECNO()

RecordInfo() Method various infos about record

RecSize Access = RECSIZE()

Refresh() Method undo record changes

RegisterClient() Method register a window

Reindex() Method = REINDEX

Relation() Method = DBRELATION()

RelationObject() Method object of the relation

Replace() Method = REPLACE

ResetNotification() Method suppress notifying

RLock() Method = RLOCK()

RLockList Access = RLOCKLIST()

RLockVerify() Method similar to RLOCK()

RollBack() Method roll back

OBJ 302

Scope Access,Assign general RDD scope

Seek() Method = SEEK

SeekEval() Method = SEEK EVAL

SetDataField() Method assign object to field

SetFilter() Method = DBSETFILTER()

SetIndex() Method = SET INDEX TO...

SetOrder() Method = DBSETORDER()

SetOrderCondition() Method condit. of INDEX..FOR

SetRelation() Method = DBSETRELATION()

SetSelectiveRelation() Method set selective relation

Shared Access = ! ISDBEXCL()

Skip() Method = SKIP

Sort() Method = SORT

Status Access

Sum() Method = SUM

SuspendNotification() Method suspend notification

Total() Method = TOTAL

Unlock() Method = UNLOCK

Update() Method = UPDATE

Used Access = USED()

UsersDbf() Method = USERSDBF()

WhileBlock Access,Assign global RDD 'while' block

Zap() Method = ZAP

By default, all methods of the DATASERVER class are empty and call the predefined

DataServer:NoMethod(), all Access methods call DataServer:NoiVarGet() and all Assign

methods call the DataServer:NoiVarPut() method. A very minimal (hybrid) RDD driver should

therefore at least specify it's own INIT(), CLOSE() and FIELDGET() methods and the USED

Access method. See also section RDD and an example in the <FlagShip_dir>/system/

smallrdd.prg file.

Compatibility: the DATASERVER is a superset of the CA/VO class of the same name. The

DBSERVER class is generally compatible to CA/VO and to other FlagShip RDDs. If slight

differences exist, they are given in the description of the particular method below. Neither the

DataServer, nor the DBserver class are available in CA/Clipper.

 OBJ 303

DBSERVERNEW() and DBFIDXNEW()

Syntax 1:

obj = DBSERVER {expC1, [expL2], [expL3], [expC4],
[expA5], [expL6]}

or:

obj = DBSERVERNEW (expC1, [expL2],
[expL3],[expC4],[expA5],[expL6])

Syntax 2:

obj = DBFIDX {expC1, [expL2], [expL3], [NIL],
[NIL], [expL6] }

or:

obj = DBFIDXNEW (expC1, [expL2], [expL3], [NIL],
[NIL], [expL6])

Purpose:

Creates a new DBSERVER object for the DBFIDX driver, optionally initialized by the

supplied arguments. Opens the specified database (and its associated memo file

when memo fields exist) in the current or the first free working area, equivalent to the

USE command or DBUSEAREA() function.

DBSERVER{} or DBSERVERNEW() according to syntax 1 is designed for generic RDD

purposes and may be slightly slower than alternatively using the RDD driver name

itself according to syntax 2, see text below.

Arguments:

<expC1> specifies the name of the database file to open in the current or the first

free working area. If no extension is specified, the default .dbf extension is

assumed. Upper/lower case translation is performed according to FS_SET(), the

search path may be specified with SET PATH or SET DEFAULT.

Options:

<expL2> is a synonym for the SHARED clause of the USE command. If specified

TRUE (or if the DB_SHARED constant is used), the database is open for shared

use in multiuser, multitasking network or concurrent mode. If the argument is

FALSE, the database is opened in EXCLUSIVE mode. If not specified, the current

SET EXCLUSIVE status is used.

<expL3> is a synonym for the READONLY clause of the USE command. If the

argument is TRUE (or if the DB_READONLY constant is used), the database is

opened for read-only purposes. The Unix access rights -r-- are sufficient for the

database and memo <file> (but not for index files (.idx of the DBFIDX driver),

which must always be -rw-). In an attempt to REPLACE or APPEND a record, a

run-time error is brought up. If the argument is FALSE or not specified, the

database is open in read-write mode.

<expC4> is the driver name of the DBSERVER class. If not specified, it defaults to the

driver specified by RDDSETDEFAULT() which in turn defaults to DBFIDX. If

OBJ 304

specified, and the name differs from the default driver, you also have to include

the EXTERN <expC4>NEW statement somewhere in the application, or explicitly

link in the RDD driver.

Alternatively, you may explicitly invoke the RDD driver itself according to syntax

2, e.g. DBFIDXNEW(...), CB4CDX{..} etc, to avoid this parameter (or specify it NIL).

The FlagShip high-level USE command and DBUSEAREA() function call the

default driver (usually DBFIDXNEW()), if the VIA clause is not given.

<expA5> is not used and placed here for compatibility to VO only. You may specify

any value, the default is NIL. In FlagShip, you may create an inherited object

also from the DBSERVER class.

<expL6> is a synonym for the NEW clause of the USE command. If <expL6> is

specified TRUE (the DB_NEW constant), or not given, an unused working area

is selected first, making it the current one, and the database <expC1> is opened

there. If the argument is FALSE or the DB_SELECTED constant, the database is

opened in the currently SELECTed working area, closing any active database

occupying that working area.

Returns:

<obj> is the newly allocated DBSERVER or RDD object, usually as- signed to a

regular FlagShip variable or to an array element. Before using the object, verify

that the database was successfully opened by using the oRdd:USED instance,

or the USED() function.

Description:

DBSERVERNEW() creates a new DBserver object. The functionality is equivalent to

the standard USE command, the DBUSEAREA() function or the instantiating of the

<defaultRDD> object. The automatically called INIT() method opens an existing

database .dbf file, and its associated memo .dbt file in the current (or the first

available) working area.

After successfully opening the database (the oRdd:USED instance or the USED()

function returns TRUE), the record pointer points to the first record. If the database

is empty, both BOF() and EOF() are set to TRUE. You may then assign another alias,

indices etc. to the object.

For more information, refer to the USE command.

As with all objects, using TYPED variables (of the known RDD or DBSERVER type)

and prototypes (by default included in the stdclass.fh file) will speed up the application

significantly (e.g. specifying LOCAL oDbf AS DBSERVER).

Performance:

The direct usage of DBFIDX{} or DBFIDXNEW(), instead of the general purpose

DBSERVER{} or DBSETVERNEW() will result in faster applications.

Multiuser:

If a multiuser, multitasking and/or network access is required, database files can be

opened EXCLUSIVEly or SHARED, using the <expL2> argument, alternatively by using

the SET EXCLUSIVE command.

 OBJ 305

Opening a database EXCLUSIVEly will succeed only if it is not already in use by the

same or another user. Attempting to open a database SHARED will succeed only if

the database is not opened exclusively by another user (or concurrently in another

working area). Always check the oRdd:USED instance, USED() or NETERR() functions

or the return value <retL> to see whether the database has been successfully

opened.

For special purposes, FlagShip allows the same database to be used simultaneously

in different working areas, when the given ALIAS names (given in the oRdd:ALIAS

instance, or specified by the 4th argument in DBUSEAREA() function) differ. On the

object instantiation, FlagShip automatically creates a new ALIAS name, if such

already exist. The handling of concurrent databases is the same, as the use of shared

databases in multiuser mode.

In SHARED mode, any write attempt to the database or memo file (like REPLACE,

DELETE, RECALL, oRdd:FieldName := ... or alias->FieldName := ...) requires that the

current record or the whole file is locked beforehand using RLOCK() or FLOCK(). This

will ensure data integrity denying other users a write access to the same record or

database. When the write access is finished, use UNLOCK or UNLOCK ALL to release

the previously set record and file locks, so that another user may lock the file or

record.

FlagShip's RDD allows automatic record and file locking/unlocking, when a RLOCK()

or FLOCK() is not already specified by the programmer. The auto-locking capability is

specified in the oRdd:ConcurrencyControl instance. During object creation, this

instance will be set according to the current SET AUTOLOCK state. You may redefine

the instance at any later time.

Global changes to the physical record storage order (PACK and ZAP) or rebuilding

the index files (INDEX, REINDEX) require an EXCLUSIVE open mode (which cannot be

handled by the automatic concurrence control).

Refer to the USE command and LNG.4.8 for more information about multiuser

programming.

Example 1:
 LOCAL dbf5 AS DBSERVER // optional
 SELECT 5
 dbf5 := DBSERVERNEW ("mydbf",,,,, .F.) // minimal usage
 ** := DBSERVERNEW ("mydbf",,,"dbfidx",,.F.) // equivalent
 ** := DBFIDXNEW ("mydbf",,,,, .F.) // equivalent
 ** := DBSERVER {"mydbf"} // ditto, NEW
 ** := DBSERVERNEW ("mydbf") // ditto, NEW

 if !dbf5:USED // check success
 ? "Couldn't open mydbf.dbf file in WA5"
 QUIT
 endif

 ? "The " + dbf5:NAME + " database was open in " + ;
 if(dbf5:SHARED, "shared", "exclusive") + ;
 if(dbf5:READONLY, ", read-only", "") + ;
 " mode. The automatic locking is " + ;

OBJ 306

 if(!dbf5:SHARED, "not required.", ;
 if(db5:CONCURRENCY, "enabled.", "disabled."))

Example 2:

Hybrid use of objects and commands is possible in FS4

 LOCAL oAdr AS DBSERVER // or ...AS DBFIDX
 SET AUTOLOCK TO 0
 oAdr := DBFIDXNEW ("address", .T., .F.)
 if !USED() // == if NETERR()
 QUIT
 endif
 APPEND BLANK // == oAdr:APPEND()
 REPLACE field->Name WITH "Smith"
 oAdr:First := "John" // == address->First := ...

 oAdr:APPEND() // == DBAPPEND()
 Name := "Miller" // == address->Name := ...
 oAdr:First := "Peter" // == address->First := ...

Example 3:

Other hybrid use of objects, functions and commands

 LOCAL oAdr AS DBSERVER
 USE address INDEX adr1,adr2 NEW SHARED
 if NETERR()
 quit
 endif
 ? DBF() + " is open in working area " + ;
 ltrim(str(SELECT())) + ", alias = " + ALIAS()
 DBAPPEND()
 FIELDPUT (1, "Smith")
 SEEK "Miller"
 ? "Miller was " + if(FOUND(), "found at record " + ;
 ltrim(str(RECNO())), "not found")

 oAdr := DBOBJECT() // retrieve object
 ? oAdr:NAME + " is open in working area " + ;
 ltrim(str(SELECT())) + ", alias = " + oAdr:ALIAS
 oAdr:SEEK("Smith")
 ? "Smith was " + if(oAdr:FOUND, "found at record " + ;
 ltrim(str(oAdr:RECNO)), "not found")

Classification:

programming

Class:

<FlagShip_dir>/include/

datserver.fh = prototype of DATASERVER class

dbserver.fh = prototype of DBSERVER class

dbfidx.fh = prototype of DBFIDX class

Include:

The constants are available in "rddsys.fh"

 OBJ 307

Compatibility:

Available in FS4 and VO only. FS4 does not support the VO's optional use of

<expO1>, nor an array of RDDs in <expA5>. VO does not support the 6th parameter

<expL6>, nor the hybrid use of database commands and functions with objects.

Related:

USE, DBUSEAREA(), USED(), RDDSETDEFAULT(), CLASS, PROTOTYPE,

oRdd:INFO(), LNG.2.11, other drivers in sect. RDD #

OBJ 308

DataServer and DBserver Properties

Note: you may determine current database object <oRdd> by DbObject(), so e.g. the
return of Alias() function is equivalent to DbObject():Alias
The used DBI_* and DBOI_* constants/manifests are defined in rddsys.fh

oRdd:ALIAS <─> expC Access/Assign

Contains a string representing the alias of the work area. It is set to the database

name on instantiation. Equivalent to and invoked from the ALIAS() function and

oRdd:INFO(DBI_ALIAS) method. Compatibility: VO supports access only.

Related: ALIAS(), oRdd:INFO(DBI_ALIAS)

oRdd:APPEND ([expL1]) ─> retL Method

Adds a new empty record to the end of the currently selected database. The

availability is signaled by oRdd:INFO(DBI_CANPUTREC). Equivalent to and invoked

from the APPEND BLANK command or the DBAPPEND() function.

Optional arguments: <expL1> indicates if the existing record locks should be

released. If not specified or TRUE, all record locks are cleared, then the new

record appended and locked. This is equivalent to the behavior of the APPEND

BLANK command. If specified FALSE, the previous records remain locked (until

oRdd:UNLOCK() or oRdd:UNLOCK(recNo) methods, or the UNLOCK command is

executed), and the new record is added to the lock list.

Returns: <retL> is a logical value, TRUE signals the success, an error otherwise.

Example:

 LOCAL ii, oAdr
 oAdr := DBSERVER {"address", .T.} // open shared
 FOR ii := 1 TO 10
 oAdr:APPEND(.F.) // hold locks
 NEXT
 aeval(oAdr:RlockList(), {|x| QOUT("Lock:",x)})
 if oAdr:APPEND() // release RLOCKs first
 oAdr:Name := "Smith" // replace
 oAdr:UNLOCK() // unlock all
 endif

Related: APPEND BLANK, DBAPPEND(), UNLOCK, DBRUNLOCK(),

oRdd:UNLOCK(), oRdd:FIELDINFO(), oRdd:INFO(DBI_CANPUTREC)

oRdd:APPENDDB (expC1...) ─> retL Method

Adds records to the current (target) database file from another (source) database file.

Equivalent to the APPEND FROM command.

 OBJ 309

retL = oRdd:APPENDDB (expC1|expO1, [expA2],
[expC3|expB3], [expC4|expB4],
[expN5|expL5], [expC6])

Arguments: <expC1>|<expO1> is the name or object of the source database. If no

extension is specified, it is assumed to be .dbf, or the standard extension

according to the RDD driver of <expC6>. If <expC1> is specified, the source

database is used in shared, read- only mode. If <expO1> is given, the RDD

server object is used.

Options: <expA2> is an array of character values, specifying the field names of the

source and target database to be included. If not specified, all fields of the source

database are transferred. Equivalent to the FIELDS clause of APPEND FROM.

FlagShip performs an automatic type translation, if necessary.

<expC3>|<expB3> is equivalent to the FOR scope. The condition, given as a string

or code block, is evaluated for each record of the source scope.

<expC4>|<expB4> is equivalent to the WHILE scope. The condition, given as a

string or code block, is evaluated for each record of the source from the current

record until it returns FALSE.

<expN5>|<expL5> is the range of records in the source, providing the same

functionality as the ALL, REST and NEXT clause of commands. See chapter 6.2

for the scope values.

<expC6> is equivalent to the VIA clause of the APPEND FROM command. It

specifies the RDD of the source database, if <expC1> is used.

Scope: If none of the arguments 3 to 5 are specified, the global source server scope

is used, see chapter 6.1.

Returns: <retL> signals the success if TRUE or failure otherwise.

Compatibility: in VO, the first 2 arguments are mandatory and the <expC6> argument

is not available.

Related: APPEND FROM, oRdd:APPENDSDF(), oRdd:APPENDDELIMITED(),

oRdd:INFO()

oRdd:APPENDDELIMITED (expC1...) ─> retL Method

Adds records to the current (target) database file from an ASCII text file in a "comma-

separated-value" CSV file format (source). Equivalent to APPEND FROM ...

DELIMITED command.

retL = oRdd:APPENDDELIMITED (expC1, [expC2],
[expA3], [expC4|expB4], [expC5|expB5],
[expN6|expL6])

OBJ 310

Arguments: <expC1> is the name of the ASCII source file. If no extension is specified,

it is assumed to be .txt.

Options: <expC2> is a single character specifying the delimiter of character fields,

equivalent to the DELIMITED WITH clause of APPEND FROM ... command. If not

specified, the oRdd:INFO(SETDELIMITER) character, or double quotation mark (")

is assumed.

<expA3> is an array of character values, specifying the field names of the target

database and the order of the fields in the text file. If not specified, the order of

fields corresponds to the field order of the target database. Equivalent to the

FIELDS clause of APPEND FROM.

<expC4>|<expB4> is equivalent to the FOR scope. The condition, given as a string

or code block, is evaluated for each record of the scope.

<expC5>|<expB5> is equivalent to the WHILE scope. The condition, given as a string

or code block, is evaluated for each record from the current record until it returns

FALSE.

<expN6>|<expL6> is the range of records, providing the same functionality as the

ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: The global server scope according to chapter 6.1 is not applicable for the text

(source) file. If the parameters 4 to 6 are not specified, all records of the source are

transferred.

Returns: <retL> signals the success if TRUE or failure otherwise.

Compatibility: the first 3 arguments are mandatory in VO.

Related: APPEND FROM ... DELIMITED, oRdd:APPENDSDF(), oRdd:APPENDDBF(),

oRdd:INFO()

oRdd:APPENDSDF (expC1...) ─> retL Method

Adds records to the current database file (target) from an ASCII text file in SDF format

(source). Equivalent to the APPEND FROM ... SDF command.

retL = oRdd:APPENDSDF (expC1, [expA2],
[expC3|expB3], [expC4|expB4],
[expN5|expL5])

Arguments: <expC1> is the name of the ASCII source file in SDF format. If no

extension is specified, .txt is assumed.

Options: <expA2> is an array of character values, specifying the field names of the

target database and the order of the fields in the text file. If not specified, the

order of fields corresponds to the field order of the target database. Equivalent

to the FIELDS clause of APPEND FROM.

 OBJ 311

<expC3>|<expB3> is equivalent to the FOR scope. The condition, given as a string

or code block, is evaluated for each record of the source scope.

<expC4>|<expB4> is equivalent to the WHILE scope. The condition, given as a string

or code block, is evaluated for each record from the current record until it returns

FALSE.

<expN5>|<expL5> is the range of records, providing the same functionality as the

ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: The global server scope according to chapter 6.1 is not applicable for the text

(source) file. If the parameters 3 to 5 are not specified, all records of the source are

transferred.

Returns: <retL> signals the success if TRUE or failure otherwise.

Compatibility: the first 2 arguments are mandatory in VO.

Related: APPEND FROM ... SDF, oRdd:APPENDDBF(), oRdd:APPEND-

DELIMITED(), example in sect RDD.2

oRdd:ASSTRING () ─> retC Method

This method is equivalent to the oRdd:NAME access. It returns the main part of the

used database file name, e.g. "MyFile". Available for compatibility purposes to

CA/VO.

oRdd:AVERAGE (expC1...) ─> retA Method

Calculates the average of a series of numeric expressions for a range of records in

the current database file and puts the results in the returned array. Similar to the

AVERAGE command.

retA = oRdd:AVERAGE (expC1|expB1|expA1,
[expC2|expB2], [expC3|expB3],
[expN4|expL4])

Arguments: <expC1>|<expB1>|<expA1> is a string which specifies the numeric

expression (e.g. field names) to be averaged, a code block to be executed, or

an array of expressions or code blocks.

Options: <expC2>|<expB2> is equivalent to the FOR scope. The condition, given as

a string or code block, is evaluated for each record of the scope.

<expC3>|<expB3> is equivalent to the WHILE scope. The condition, given as a

string or code block, is evaluated for each record from the current record until it

returns FALSE.

<expN4>|<expL4> is the scope, a range of records, providing the same functionality

as the ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope

values.

OBJ 312

Scope: If none of the arguments 2 to 4 are specified, the global server scope is used,

see chapter 6.1.

Returns: <retA> is an array of results. If a single expression or code block was

specified, an array length of 1 is returned.

Related: AVERAGE command

oRdd:AXIT () ─> retL|NIL Method

This method performs an internal garbage collection of the object, just before the

object is destroyed. It is invoked automatically, you should not invoke it manually.

See additional description in section LNG.11.3 and RDD.2.3.3. To ensure the correct

functionality, an inheriting class should invoke SUPER:AXIT() method, if a separate

oRdd:AXIT() method is required and specified (check it by ISOBJPROPERTY()

function).

oRdd:BOF ─> expL Access

Contains a logical value indicating whether there was an attempt to move past the

beginning of the current database file. It also returns TRUE if the database contains

no records. Equivalent to and invoked from the BOF() function.

oRdd:CARGO <─> exp Export (access/assign)

Contains user data of any type, to store information retrieved later in the program.

Not used by the RDDs itself. Compatibility: not available in VO.

oRdd:CLEARFILTER () ─> retL Method

Clears the global filter condition (see also chapter 6.1) specified with the

oRdd:SETFILTER() method or the SET FILTER command. Equivalent to and invoked

from the SET FILTER TO command w/o parameters or the DBCLEARFILTER() function.

Returns: <retL> signals success, if TRUE.

Related: oRdd:SETFILTER(), oRdd:FILTER, SET(), SET FILTER,

DBCLEARFILTER()

oRdd:CLEARINDEX () ─> retL Method

Clears all indexes currently associated with the server. Equivalent to and invoked

from the CLOSE INDEX or SET INDEX TO commands w/o parameters.

Returns: <retL> signals success, if TRUE.

Related: oRdd:SETINDEX(), SET INDEX, CLOSE INDEX

 OBJ 313

oRdd:CLEARLOCATE () ─> retL Method

Clears the LOCATE condition set by the <for> argument of oRdd:LOCATE() method or

the FOR clause of the LOCATE command. Note, that this condition is different from

the global oRdd:FORBLOCK instance, described also in chapter 6.1.

Returns: <retL> signals success, if TRUE.

Related: oRdd:LOCATE(), oRdd:CONTINUE(), LOCATE, CONTINUE

oRdd:CLEARRELATION () ─> retL Method

Clears all relations to other database servers. Equivalent to and invoked from the

command SET RELATION TO w/o parameters.

Returns: <retL> signals success, if TRUE.

Related: oRdd:SETRELATION(), oRdd:RELATION(), SET RELATION

oRdd:CLEARSCOPE () ─> retL Method

Sets the global scope instances oRdd:SCOPE, oRdd:FORBLOCK and oRdd:

WHILEBLOCK to NIL. See also chapter 6.1 for an additional discussion of the global

scope.

Returns: <retL> signals success, if TRUE.

Related: oRdd:SCOPE, oRdd:FORBLOCK, oRdd:WHILEBLOCK

oRdd:CLOSE () ─> retL Method

Closes the database file and its associated index and memo files, if any. Clears the

relations set to other databases. Clears all global scopes and filters for the database

server. Equivalent to and invoked from the commands CLOSE DATABASE or USE w/o

parameters. Invoked automatically, when the application terminates.

Returns: <retL> signals success, if TRUE.

Related: DBSERVERNEW(), oRdd:INIT(), oRdd:SETORDER(), oRdd:SETINDEX(),

oRdd:CLEARSCOPE(), oRdd:CLEARRELATION(), CLOSE DATABASES, USE, QUIT

oRdd:COMMIT () ─> retL Method

Commits all changes of the server fields to disk, ensuring that all buffers are flushed.

Equivalent to and invoked from the DBCOMMIT() function, oRdd:SKIP(0) method or

SKIP 0 command. Note, that this flushing is performed asynchronously in background,

OBJ 314

as opposed to the immediate, synchronous flushing by the COMMIT command or

DBCOMMITALL() function.

Returns: <retL> signals success, if TRUE.

Related: oRdd:SKIP(), COMMIT, DBCOMMIT(), DBCOMMITALL()

oRdd:CONCURRENCYCONTROL <─> expN Access/Assign

Contains a numeric value indicating the mode of automatic concurrence control for

this data server, determining when and how records are locked and released. Preset

during instantiation according to the state of the SET AUTOLOCK switch. The following

constants are available in the #include "rddsys.fh" file.

Constant Value Description

CCNONE 0 The data server provides no automatic record locking; the

application is required to do all the locking explicitly.

CCOPTIMISTIC 1 Execute the AUTOxLOCK() function or method, if lock is

required. The data server locks and unlocks the record (or

the file on multiple record replacement) automatically, but

only if no programmer's RLOCK() or FLOCK() was

detected. This option follows the SET AUTOLOCK setting

and is therefore performed only, if SET AUTOLOCK was

not set < 2.

CCSTABLE 2 currently equivalent to CCOPTIMISTIC.

CCREPEATABLE 3 currently equivalent to CCOPTIMISTIC.

CCFILE 4 currently equivalent to CCOPTIMISTIC.

negat number < 0 Similar to CCOPTIMISTIC, but the trial period is specified

here in negative seconds. To try the lock for 3 seconds,

specify -3, to try it forever, specify e.g. -9999999.

Compatibility: the AUTOxLOCK() functionality is not available in VO.

Related: SET AUTOLOCK, AUTOxLOCK(), RLOCK(), FLOCK(), SET

MULTILOCKS, oRdd:FIELDPUT(), oRdd:INFO()

oRdd:CONTINUE () ─> retL Method

Continues the pending LOCATE or oRdd:LOCATE() search from the current record,

using the <for> condition of LOCATE, but ignoring its <while> condition and <scope>.

Equivalent to and invoked from the CONTINUE command. Hint: If you want to continue

searching with the <while> condition, set the <scope> to REST and perform another

oRdd:LOCATE().

Returns: <retL> signals success, equivalent to the oRdd:FOUND instance. If the

search was successful, the matching record becomes the current record, and

this method, the FOUND() function or oRdd:FOUND instance returns TRUE. If not

 OBJ 315

found, the record pointer is positioned on EOF or the first record outside the FOR

scope, and FALSE is returned.

Related: oRdd:LOCATE(), oRdd:CLEARLOCATE(), oRdd:INFO(), LOCATE,

CONTINUE

oRdd:COPYDB (expC1...) ─> retL Method

Copies records from the current database file (source) to another database file

(target). Equivalent to the COPY TO command.

retL = oRdd:COPYDB (expC1|expO1, [expA2],
[expC3|expB3], [expC4|expB4],
[expN5|expL5], [expC6])

Arguments: <expC1>|<expO1> is the name or object of the target database. If no

extension is specified, it is assumed to be .dbf, or the standard extension

according to the RDD driver of <expC6>. If <expC1> is specified, the target

database is opened exclusively. If <expO1> is given, the RDD server object is

used and locked automatically.

Options: <expA2> is an array of character values, specifying the field names of the

source and target database to be copied. If not specified, all fields of the source

database are transferred. Equivalent to the FIELDS clause of COPY TO.

FlagShip performs an automatic type translation, if necessary.

<expC3>|<expB3> is equivalent to the FOR scope. The condition, given as a string

or code block, is evaluated for each record of the scope.

<expC4>|<expB4> is equivalent to the WHILE scope. The condition, given as a

string or code block, is evaluated for each record from the current position in the

source database until <expB4> returns FALSE.

<expN5>|<expL5> is the range of records, providing the same functionality as the

ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope

values.

<expC6> is equivalent to the VIA clause of the COPY TO command. It specifies the

RDD of the target database, if <expC1> is used.

Scope: If none of the arguments 3 to 5 are specified, the global scope of the current

server is used, see chapter 6.1.

Returns: <retL> signals success, if TRUE, or failure (e.g. the open mode) otherwise.

Compatibility: in VO, the first 2 arguments are mandatory and <expC6> is not

available.

Related: COPY TO, oRdd:COPYSDF(), oRdd:COPYDELIMITED(), APPEND

FROM, COPY FILE, RENAME

OBJ 316

oRdd:COPYDELIMITED (expC1...) ─> retL Method

Copies records from the current database file (source) to a "comma- separated-

value" CSV file format (target). Equivalent to the COPY TO ... DELIMITED command.

retL = oRdd:COPYDELIMITED (expC1, [expC2], [expA3],
[expC4|expB4], [expC5|expB5],
[expN6|expL6])

Arguments: <expC1> is the name of the target ASCII file. If no extension is specified,

it is assumed to be .txt.

Options: <expC2> is a single character specifying the delimiter of character fields,

equivalent to the DELIMITED WITH clause of the COPY TO ... command. If not

specified, the oRdd:INFO(SETDELIMITER) character, or double quotation mark

(") is assumed.

<expA3> is an array of character values, specifying the field names of the source

database and the order of the fields in the target text file. If not specified, all fields

of the source are transferred, the order of fields corresponds to the field order of

the source database. Equivalent to the FIELDS clause of COPY TO.

<expC4>|<expB4> is equivalent to the FOR scope. The condition, given as a string

or code block, is evaluated for each record of the scope.

<expC5>|<expB5> is equivalent to the WHILE scope. The condition, given as a

string or code block, is evaluated for each record from the current position until

<expB5> returns FALSE.

<expN6>|<expL6> is the range of records, providing the same functionality as the

ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope

values.

Scope: If none of the arguments 4 to 6 are specified, the global scope of the current

server is used, see chapter 6.1. If not available, all records are transferred.

Returns: <retL> signals success, if TRUE, or failure otherwise.

Compatibility: the first 3 arguments are mandatory in VO.

Related: COPY TO ... DELIMITED, oRdd:COPYSDF(), oRdd:COPYDBF(),

oRdd:INFO()

oRdd:COPYSDF (expC1...) ─> retL Method

Copies records from the current database file (source) to an ASCII text file in SDF

format (target). See the additional description of the format in the COPY TO ... SDF

command.

retL = oRdd:COPYSDF (expC1, [expA2], [expC3|expB3],
[expC4|expB4], [expN5|expL5])

 OBJ 317

Arguments: <expC1> is the name of the ASCII target file in SDF format. If no

extension is specified, .txt is assumed.

Options: <expA2> is an array of character values, specifying the field names of the

source database and the order of the fields in the target text file. If not specified,

all fields of the source are transferred, the order of fields corresponds to the field

order of the source database. Equivalent to the FIELDS clause of COPY TO.

<expC3>|<expB3> is equivalent to the FOR scope. The condition, given as a string

or code block, is evaluated for each record of the source scope.

<expC4>|<expB4> is equivalent to the WHILE scope. The condition, given as a string

or code block, is evaluated for each record from the current position until

<expB4> returns FALSE.

<expN5>|<expL5> is the range of records, providing the same functionality as the

ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: If none of the arguments 3 to 5 are specified, the global scope of the current

server is used, see chapter 6.1. If not available, all records are transferred.

Returns: <retL> signals success, if TRUE, or failure otherwise.

Compatibility: the first 2 arguments are mandatory in VO.

Related: COPY TO ... SDF, oRdd:COPYDBF(), oRdd:COPYDELIMITED()

oRdd:COPYSTRUCTURE (expC1...) ─> retL Method

Creates an empty database (target) with field definitions from the current (source)

database. Equivalent to the COPY STRUCTURE TO command.

retL = oRdd:COPYSTRUCTURE (expC1, [expA2], [expC3])

Arguments: <expC1> is the name of the target database. If no extension is specified,

it is assumed to be .dbf, or the standard extension according to the RDD driver

of <expC3>.

Options: <expA2> is an array of character values, specifying the field names of the

source database to be included in the given order in the target database. If not

specified, the target database overtakes the structure of the source. Equivalent

to the FIELDS clause of COPY STRUCTURE.

<expC3> is equivalent to the VIA clause of the COPY STRUCTURE command. It

specifies the RDD of the target database, if not the default one.

Returns: <retL> signals success, if TRUE, or failure (e.g. the create mode) otherwise.

Compatibility: in VO, the first 2 arguments are mandatory and the <expC3> argument

is not available.

Related: COPY STRUCTURE TO, oRdd:CREATEDB()

OBJ 318

oRdd:COUNT ([expC1...]) ─> retN Method

Counts records in the current working area, which fall into the given scope and fulfill

the specified conditions. The result is returned. Equivalent to and invoked from the

COUNT command.

retN = oRdd:COUNT ([expC1|expB1], [expC2|expB2],
[expN3|expL3])

Options: <expC1>|<expB1> is equivalent to the FOR scope. The condition, given as

a string or code block, is evaluated for each record of the source scope.

<expC2>|<expB2> is equivalent to the WHILE scope. The condition, given as a

string or code block, is evaluated for each record from the current position until

<expB2> returns FALSE.

<expN3>|<expL3> is the range of records, providing the same functionality as the

ALL, REST and NEXT clause of commands. See chapter 6.1 for the scope

values.

Scope: If none of the arguments 1 to 3 are specified, the global scope of the current

server is used, see chapter 6.1. If not available and none of the global filters (SET

DELETE or SET FILTER) were specified, oRdd:RECCOUNT is returned.

Returns: <retN> is the number of records which fall into the given scope.

Related: COUNT, oRdd:RECCOUNT, oRdd:AVERAGE(), oRdd:TOTAL()

oRdd:CREATEDB (expC1...) ─> retL Method

Creates a new, empty database (and the associated memo file, if memo fields exist)

according to the structure in the given array. Equivalent to and invoked from the

DBCREATE() function, which should preferably be used. The main reason for this

method is to exist as an entity of the RDD, which allows any RDD to create its own,

required structure.

retL = oRdd:CREATEDB (expC1, expA2, [expN3|expC3])

Arguments: <expC1> is the name of the new created database. If no extension is

specified, it is assumed to be of the standard RDD extension(s) (e.g. .dbf

and .dbt). If a path is not specified, the file is placed into the current or the SET

DEFAULT directory. The automatic case conversion according to FS_SET() is

considered. If a file of the same name exists, it will be overwritten.

<expA2> is a two-dimensional array that contains the structure of the database to be

created. See detailed description in the DBCREATE() function. The supported

field type and field length (DBS_TYPE and DBS_LEN, the 2nd and 3rd element of

the subarray) may depend on the RDD used.

Options: <expN3>|<expC3> are the associated access rights to the file given in an

semi-octal notation or as a string (e.g. 664 = "rw-rw-r- -"), or passed from the 4th

parameter of DBCREATE(). The semi-octal notation includes three digits (for the

 OBJ 319

owner, group, world), each in the range 0..7 are required. 0 specifies no

permission, 4 = read only, 2 = write only, 6 = read/ write. If not specified, the

default "umask" is used.

Returns: <retL> signals success, if TRUE, or failure (e.g. in- sufficient directory

access rights, wrong field definition etc.) otherwise. The return value is passed

to DBCREATE().

Example:

 LOCAL oNew
 if DBCREATE ("newdb", {{"name","C",20,0}, {"date","D",8,0}},
 "CB4CDX", 664)
 oNew := DBSERVER {"newdb",,, "CB4CDX"}
 ? "Records in " + oNew:NAME, oNew:RECCOUNT
 ? "The file is placed in " + oNew:INFO(DBI_FULLPATH)
 endif

Compatibility: this method in not available in VO. For other than the default "DBFIDX"

RDD, differences may apply.

Related: DBCREATE(), oRdd:DBSTRUCT, FILE(), DBSTRUCT(), CREATE FROM

oRdd:CREATEINDEX (expC1...) ─> retL Method

Creates an index file or, if the RDD supports multiple orders, the first order within an

index file. If the index file exists, it is overwritten. If another order name than <expC1>

is required for multiple order indexes, use the oRdd:CREATEORDER() method

instead. Equivalent to and invoked from the INDEX ON command, DBCREATEINDEX()

or ORDCREATE() functions.

retL = oRdd:CREATEINDEX (expC1, expC2, [expB3],
[expL4])

Arguments: <expC1> is the name of the newly created index file. If no extension is

specified, it is assumed to be of the standard RDD index extension, i.e. .idx for

the DBFIDX driver. If a path is not specified, the file is placed into the current or

the SET DEFAULT directory. The automatic case conversion according to

FS_SET() is considered. If a file of the same name exists, it will be overwritten.

The access right of the database applies for the index file.

<expC2> is a string specifying the index expression, e.g. the field name. This

expression is stored in the index (order) header and evaluated later on any index

(order) access. See additional info in the DBCREATEINDEX() description. To

create a descending order, you may use the DESCEND() function, or specify it

with the oRdd:SETORDERCONDITION(...) method (alternatively with oRdd:

ORDERDESCEND(...) or oRdd:ORDERINFO(DBOI_ISDESC, ...) methods).

Options: <expB3> is a code block used for the index (order) creation. Its result should

match the <expC2> result, but the code block body can contain additional code

OBJ 320

used at creation time only, e.g. to display the creation status. If <expB3> is not

specified, the <expC2> argument is used.

<expL4> is a logical value equivalent to the UNIQUE clause. If not specified, the

current state of SET UNIQUE is used.

Scope: the condition set with oRdd::SETORDERCONDITION() is considered.

Returns: <retL> signals success, if TRUE, or failure (e.g. in- sufficient directory

access rights, wrong field definition etc.) otherwise. The return value is passed

to the DBCREATEINDEX() or ORDCREATE() function, if this was used.

Multiuser: if the database is opened (or the class instantiated) in SHAREd mode, at

least FLOCK() is required (or AUTOFLOCK() used, if possible according to

oRdd:ConcurrencyControl) to ensure the index integrity. You may disable this lock

requirement by assigning a FALSE value to the oRdd:INDEXLOCK instance.

Example:

 USE address NEW
 INDEX ON name+first TO addr1 FOR name="Smith" DESCEND

 -is equivalent to:

 oMyDbf := DBSERVERNEW ("address")
 oMyDbf:SETORDERCONDITION ('name="Smith"',,,,,,,,,.T.)
 oMyDbf:CREATEINDEX ("addr1","name+first",{|| name+first},.F.)
 oMyDbf:SETORDERCONDITION ()

Compatibility: Compatible to VO. For other than the default "DBFIDX" RDD,

differences may apply.

Related: INDEX ON, DBCREATEINDEX(), ORDCREATE(), ORDCONDSET(),

oRdd:CREATEORDER(), oRdd:INFO(), oRdd:ORDERINFO(),

oRdd:SETORDER- CONDITION()

oRdd:CREATEORDER (expC1...) ─> retL Method

When the RDD supports multiple orders, it creates an additional or replaces an

existing order within an existing index, or creates the first order within a new index

file. This is similar to and invoked from the ORDCREATE() function or INDEX

command. If the RDD supports a single order only, like the default DBFIDX, the

functionality is equivalent to the oRdd:CREATEINDEX() method.

retL = oRdd:CREATEORDER (expC1, expC2, expC3,
[expB4], [expL5])

Arguments: <expC1> is the name of the existing, or a newly created index file. If no

extension is specified, it is assumed to be of the standard RDD index extension,

i.e. .idx for the DBFIDX driver. If a path is not specified, the file is searched/placed

in the current or the SET PATH, SET DEFAULT directory. The automatic case

conversion according to FS_SET() is considered.

 OBJ 321

<expC2> is a string specifying the order name within the index file. If single-order is

supported only, the order name is equivalent to <expC1>.

<expC3> is a string specifying the index expression, e.g. the field name. This

expression is stored in the index (order) header and evaluated later on any index

(order) access. See additional info in the DBCREATEINDEX() description. To

create a descending order, you may use the DESCEND() function, or specify it

with the oRdd:SETORDERCONDITION(...) method (alternatively with oRdd:

ORDERDESCEND(...) or oRdd:ORDERINFO (DBOI_ISDESC, ...) methods).

Options: <expB4> is a code block used for the index (order) creation. Its result should

match the <expC3> result, but the code block body can contain additional code

used at creation time only, e.g. to display the creation status. If <expB4> is not

specified, the <expC3> argument is used.

<expL5> is a logical value equivalent to the UNIQUE clause. If not specified, the

current state of SET UNIQUE is used.

Scope: the condition set with oRdd::SETORDERCONDITION() is considered.

Returns: <retL> signals success, if TRUE, or failure (e.g. in- sufficient directory

access rights, wrong field definition etc.) otherwise. The return value is passed

to the DBCREATEINDEX() or ORDCREATE() function, if this was used.

Multiuser: if the database is opened (or the class instantiated) in SHAREd mode, at

least FLOCK() is required to ensure the index integrity. You may disable the locking

check by assigning a FALSE value to the oRdd:INDEXLOCK instance.

Example:

 oMyDbf := DBSERVERNEW ("address")
 oMyDbf:CREATEORDER ("addr1","order2","city",{|| city},.F.)
 oMyDbf:SETINDEX ("addr1")
 oMyDbf:SETORDER ("city")
 ? oMyDbf:SEEK("Munich")

Compatibility: Compatible to VO. For other than the default "DBFIDX" RDD,

differences may apply.

Related: INDEX ON, DBCREATEINDEX(), ORDCREATE(), ORDCONDSET(),

oRdd:ORDERINFO(), oRdd:SETORDERCONDITION(),

oRdd:DELETEORDER()

oRdd:DBSTRUCT () ─> retA Method

Returns a two-dimensional array, compatible to that of the DBSTRUCT() function,

containing the structure of this data server. The array length is equal to the number

of fields in the server. The subelements contains the field name, type, length and

number of decimal places. It is equivalent to and invoked from the DBSTRUCT()

function. Please see the DBSTRUCT() function for additional information.

OBJ 322

oRdd:DELETE ([expC1...]) ─> retL Method

Deletes the current record or a range of records according to the given scope.

Equivalent to and invoked from the DELETE command or the DBDELETE() function.

retN = oRdd:DELETE ([expC1|expB1], [expC2|expB2],
[expN3|expL3])

Options: <expC1>|<expB1> is equivalent to the FOR clause of DELETE. The

condition, given as a string or code block, is evaluated for each record of the

source scope.

<expC2>|<expB2> is equivalent to the WHILE scope. The condition, given as a string

or code block, is evaluated for each record from the current position, until

<expB2> returns FALSE.

<expN3>|<expL3> is the range of records, providing the same functionality as the

ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: If none of the arguments 1 to 3 are specified, the global scope of the current

server is used, see chapter 6.1. If not set, the current record is DELETEd.

Returns: <retL> signals success, if TRUE, or failure (e.g. failed lock) otherwise.

Multiuser: if the database is opened (or the class instantiated) in SHAREd mode, at

least RLOCK() for deleting a single record, or FLOCK() for multiple record processing

is required, if oRdd:CONCURRENCY is set to 0.

Related: DELETE, DBDELETE(), DELETED(), oRdd:DELETEALL(),

oRdd:DELETED, oRdd:CONCURRENCYCONTROL

oRdd:DELETEALL () ─> retL Method

Deletes all records of the database table. Equivalent to the DELETE ALL command or

the oRdd:GOTOP() ; oRdd:DELETE({|| .T.}) sequence.

Scope: The global scope according to chapter 6.1 does not apply.

Returns: <retL> signals success, if TRUE, or failure (e.g. failed lock) otherwise.

Multiuser: if the database is opened (or the class instantiated) in SHAREd mode,

FLOCK() is required, if oRdd:CONCURRENCY is set to 0.

Related: DELETE, DBDELETE(), DELETED(), oRdd:DELETEALL(),

oRdd:DELETED, oRdd:CONCURRENCYCONTROL

oRdd:DELETED ─> retL Access

A logical value indicating whether the current record is marked as deleted. Equivalent

to and invoked from the DELETED() function.

 OBJ 323

oRdd:DELETEORDER (expC1...) ─> retL Method

When the RDD supports multiple orders, it deletes (destroys) the specified order

within an existing index file. Similar to and invoked from the ORDDESTROY()

function. Not supported by RDDs with single orders, such as the default DBFIDX.

retL = oRdd:DELETEORDER (expC1|expN1, [expC2])

Arguments: <expC1>|<expN1> is the order name within the index file, or the ordinal

order number within the active order list.

Options: <expC2> is a string specifying the index file name. Use this argument only

if the index is not assigned to the server, and the <expN1> argument is not used.

Returns: <retL> signals success, if TRUE, or failure (e.g. the index is open by others

etc.) otherwise.

Multiuser: an active order cannot be destroyed if the database is opened (or the class

instantiated) in SHAREd mode, since it may also be used by others.

Related: ORDDESTROY(), oRdd:ORDERINFO()

oRdd:DRIVER ─> expC Access

Retrieves the name of the currently used RDD driver/server, e.g. "DBFIDX" for the

default driver, equivalent to oRdd:RDDNAME. The server can be specified as an

instantiation parameter to the DBserver. If no driver is set, the default driver is used;

it can be set by RDDSETDEFAULT() or DBSETDRIVER().

oRdd:EOF ─> expL Access

A logical value indicating whether there was an attempt to move past the end of the

current database file. It also returns TRUE if the database contains no records.

Equivalent to and invoked from the EOF() function.

oRdd:ERRINFO ─> expO Access

Returns the error object (see Error class) of the previous DBserver operation, or NIL

if neither RTE, I/O or Developer's error occurred there. May be used e.g. in the

RECOVER clause of the BEGIN...END sequence, when the user defined

oRdd:ERROR() method executes the BREAK statement.

oRdd:ERROR (expO1...) ─> NIL Method

Provides a method for handling error conditions raised during database processing.

This error handler is automatically called by other methods of this DBserver when an

RTE, i/o, Fatal or Developer's error occurs. You may redefine the default error

handler by executing the ERRORBLOCK() function.

OBJ 324

[NIL =] oRdd:ERROR (expO1, expC2)

Arguments: <expO1> is the error object (see Error) passed to the default, or the user-

specified error handler.

<expC2> is a string specifying the name of the method, stored in the

oErr:OPERATION instance.

Returns: always NIL.

Related: ERRORBLOCK(), oRdd:ERRINFO, FS_SET("develop"), FSC.4, file

<FlagShip_dir>/system/FSerror.prg

oRdd:EVAL (expB1...) ─> retL Method

Evaluates a code block for each record matching a scope and condition. Equivalent

to and invoked from the DBEVAL() function.

retL = oRdd:EVAL (expB1, [expC2|expB2],
[expC3|expB3], [expL4|expN4])

Arguments: <expB1> is a code block to execute for each record processed.

Options: <expC2>|<expB2> is equivalent to the FOR clause. The condition, given as

a string or code block, is evaluated for each record of the scope, for which

<expB2> returns TRUE.

<expC3>|<expB3> is equivalent to the WHILE scope. The condition, given as a string

or code block, evaluated for each record from the current position until <expB3>

returns FALSE.

<expN4>|<expL4> is the range of records, providing the same functionality as the

ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: If none of the arguments 2 to 4 are specified, the global scope of the current

server is used, see chapter 6.1.

Returns: <retL> signals success, if TRUE, or failure otherwise.

Related: DBEVAL()

oRdd:FCOUNT ─> expN Access

A numeric value representing the number of fields in the current server. Equivalent

to and invoked from the FCOUNT() function.

oRdd:FIELDGET (expN1...) ─> ret Method

Retrieves the value of a field using the ordinal position of the field in the database

structure or the field name. Equivalent to and invoked from the FIELDGET() function.

ret = oRdd:FIELDGET (expN1|expC1)

 OBJ 325

Arguments: <expN1>|<expC1> is the ordinal position of the field in the record

structure or the field name. Specifying numeric argument may perform slightly

faster on databases with a large number of fields.

Returns: <ret> is the value of the specified field. If <expN> is out of range of

FCOUNT(), the return value is NIL.

Related: FIELDGET(), <exp> := oRdd:<field>, oRdd:NOIVARGET()

oRdd:FIELDINFO (expN1...) ─> ret Method

Retrieves information about a field, similar to oRdd:DBSTRUCT() method.

ret = oRdd:FIELDINFO (expN1, expN2|expC2)

Arguments: <expN1> specifies the required type of the field information, given as a

constant (see "rddsys.fh") or a numeric value:

Constant Value Ret Returns

DBS_NAME 1 retC name of the field

DBS_TYPE 2 retC type of the field

DBS_LEN 3 retN length of the field

DBS_DEC 4 retN number of decimal places for the field

<expN2>|<expC2> is the ordinal position of the field in the record structure or the

field name. Specifying a numeric argument may perform slightly faster on

databases with a large number of fields.

Returns: <retN>|<retC> is the required field information, or NIL on error.

Compatibility: RDDs other than the default DataServer may contain additional field

features.

Related: DBSTRUCT(), oRdd:DBSTRUCT(), oRdd:INFO()

oRdd:FIELDNAME (expN1) ─> retC Method

Retrieves the name of the field at the given ordinal position. Equivalent to the

FIELDNAME() function.

retC = oRdd:FIELDPOS (expN1)

Arguments: <expN1> is the ordinal position of the requested field.

Returns: <retC> is the field name in upper case, or "" on error.

Related: FFIELDNAME(), IELDPOS(), oRdd:DBSTRUCT(), oRdd:INFO(),

oRdd:FIELDINFO()

OBJ 326

oRdd:FIELDPOS (expC1) ─> retN Method

Retrieves the ordinal position of the specified field in the database structure.

Equivalent to and invoked from the FIELDPOS() function.

retN = oRdd:FIELDPOS (expC1)

Arguments: <expC1> is the requested field name. The input is automatically

converted to upper case and abbreviated, if necessary.

Returns: <retN> is the ordinal position in the structure starting with 1. It corresponds

to the element number of the array returned by oRdd:DBSTRUCT() method. If

<expC> is not a valid field of the DBserver, the return value is 0.

Related: FIELDPOS(), oRdd:DBSTRUCT(), oRdd:INFO(), oRdd:FIELDINFO()

oRdd:FIELDPUT (expN1...) ─> ret Method

Assigns the given value to a field specified by the ordinal position in the database

structure or by the field name. Equivalent to and invoked from the FIELDPUT()

function.

ret = oRdd:FIELDPUT (expN1|expC1, exp2)

Arguments: <expN1>|<expC1> is the ordinal position of the field in the record

structure, or the field name. Specifying a numeric argument may perform slightly

faster on databases with a large number of fields.

<exp2> is the value to be assigned to the field. The data type must match the data

type of the field.

Returns: <ret> is the newly assigned value, if the operation was successful, or NIL

otherwise.

Multiuser: if the database is opened in SHAREd mode, at least RLOCK() is required,

if oRdd:CONCURRENCY is set to 0.

Related: FIELDPUT(), oRdd:RLOCK(), oRdd:CONCURRENCY, oRdd:<field> :=

<exp>, oRdd:NOIVARPUT()

oRdd:FILTER <─> expC Access/Assign

Determines or sets the global filter condition string. Equivalent to and invoked from

the SET FILTER command, DBSETFILTER() function, or oRdd:INFO(DBI_DBFILTER)

method. Note, that this instance may return an empty string "" even with an active

filter, when only the filter code block was assigned. Usually, only the filter code block

is evaluated for scoping (see oRdd:INFO (DBI_FILTERBLOCK)), this instance has an

informative character only. To reset the filter condition, use the SET FILTER TO

command, DBCLEARFILTER() function or the oRdd:CLEARFILTER() method.

 OBJ 327

Related: SET FILTER, DBSETFILTER(), DBCLEARFILTER(), oRdd:CLEARFIL-

TER(), oRdd:INFO()

oRdd:FLOCK () ─> retL Method

Locks all records of the table (database) to perform a global write access or to protect

it against write access from another user or process. Meaningful in SHAREd mode

only. Equivalent to and invoked from the FLOCK() function.

Returns: <retL> signals success. On error, FALSE is returned, which reports that the

database is FLOCKed or RLOCKed by another user, application or DBserver.

Multiuser: if the database is opened in SHAREd mode, and the automatic locking is

disabled (oRdd:CONCURRENCY is set to 0), FLOCK() is required prior to write

accessing a range of records or prior to issuing the INDEX ON command or the

oRdd:CREATEORDER(), oRdd:CREATEINDEX() methods. If oRdd:CONCURRENCY is

active, FLOCK() overrides the automatic locking and the lock remains active until

oRdd:UNLOCK() is executed. If the database was open in EXCLUSIVE mode (the

default), no locking is required and FLOCK() is ignored.

Related: FLOCK(), oRdd:RLOCK(), oRdd:UNLOCK(), oRdd:CONCURRENCY

oRdd:FORBLOCK <─> expB|NIL Access/Assign

The FOR block is a component of the general server scope, described in chapter 1.

It affects several bulk processing methods if they are called with no explicit scope.

The FOR block can be specified as a code block or a string. Accessing this instance

always returns a code block or NIL if not set. To reset the global FOR block, assign

NIL to it or execute oRdd:CLEARSCOPE() for a global reset.

Related: oRdd:WHILEBLOCK, oRdd:SCOPE, oRdd:CLEARSCOPE()

oRdd:FOUND ─> expL Access

Determines the success of a previously executed SEEK, LOCATE or CONTINUE

command, function or method. Equivalent to and invoked from the FOUND() function.

Related: FOUND(), oRdd:SEEK(), oRdd:LOCATE(), oRdd:CONTINUE(),

oRdd:EOF()

oRdd:GETARRAY ([expN1...]) ─> retA Method

Assigns the values of several records of the specified field into a one-dimensional

array. This method is a subset of the oRdd:GETARRAYFIELDS() method, which

retrieves several fields per record at once.

OBJ 328

retA = oRdd:GETARRAY ([expN1], [expC2|expN2],
[exp3])

Options: <expN1> is the maximum number of records that should be retrieved and

the size of the returned array. If omitted, 100 records is the default.

<expN2>|<expC2> is the ordinal position of the retrieved field in the record structure,

or the field name. If omitted, values of the first field are stored into the array.

<exp3> is a "seek" expression for searching the first retrieved value, equivalent to

executing the oRdd:SEEK() method with the same parameter. If not specified,

the storage of field values starts at the current record, considering the global

scope, according to chapter 6.1.

Returns: <retA> is a one-dimensional array with the retrieved field values. If the end-

of-file is reached or the scope is out of range before the given record count is

proceeded, the array size is adapted accordingly. If no record is found, LEN(retA)

is 0.

Example:

 oMyDbf := DBSERVER {"article", DB_SHARED, DB_READONLY}
 if oMyDbf:USED .and. oMyDbf:SETINDEX("articleno")
 aArtNo := GETARRAY (500, "ArtNo", 2001)
 oMyDbf:Close()
 endif

Related: FIELDGET(), oRdd:FIELDGET(), oRdd:GETARRFIELDS(), oRdd:GET-

LOOKUPTABLE()

oRdd:GETARRFIELDS ([expN1...]) ─> retA Method

Assigns the values of several records of the specified fields into a multi-dimensional

array. This method is a superset of the oRdd:GETARRAY() method.

retA = oRdd:GETARRFIELDS ([expN1],
[expA2|expC2|expN2], [exp3])

Options: <expN1> is the maximum number of records that should be retrieved and

the size of the returned array. If omitted, 100 records is the default.

<expA2>|<expN2>|<expC2> is the ordinal position of the retrieved field in the record

structure, or the field name, or an array containing field names or ordinal

positions. If omitted, or the array element is NIL, values of the first field are stored

into the array.

<exp3> is a "seek" expression for searching the first retrieved value, equivalent to

executing the oRdd:SEEK() method with the same parameter. If not specified,

the storage of field values starts at the current record, considering the global

scope, according to chapter 6.1.

 OBJ 329

Returns: <retA> is a multi-dimensional array with the retrieved field values. If the end-

of-file is reached or the scope is out of range before the given record count is

processed, the array size is adapted accordingly. If no record is found, LEN(retA)

is 0.

Example:

 oMyDbf := DBSERVERNEW ("address")
 if oMyDbf:USED .and. oMyDbf:SETINDEX("addrname")
 aField := GETARRFIELDS (50, {"First","Name",4}, "SMITH")
 AEVAL (aField, {|elem| QOUT(elem[1], elem[2], elem[3]) })
 wait
 myTbrowse (aField)
 endif

Compatibility: This method is not available in VO.

Related: FIELDGET(), oRdd:FIELDGET(), oRdd:GETARRAAY(), oRdd:GET-

LOOKUPTABLE()

oRdd:GETLOCATE () ─> retB Method

Retrieves the code block of the current LOCATE condition, or returns NIL if no

previous LOCATE command or oRdd:LOCATE() method was executed.

Returns: <retB> is the code block of the FOR clause of LOCATE command, or the

code block used in the oRdd:LOCATE() method. The condition may also be

retrieved or set by the oRdd:INFO(DBI_GETSCOPE) method.

Related: LOCATE, CONTINUE, oRdd:LOCATE(), oRdd:CONTINUE(), oRdd:INFO()

oRdd:GETLOOKUPTABLE ([expN1...]) ─> retA Method

Assigns the values of several records of the specified fields into a two-dimensional

array. This method is a subset of the oRdd:GETARRAYFIELDS() method with a slightly

different syntax.

retA = oRdd:GETLOOKUPTABLE ([expN1], [expC2|expN2],
[expC3|expN3], [exp4])

Options: <expN1> is the maximum number of records that should be retrieved and

the size of the returned array. If omitted, 100 records is the default.

<expN2>|<expC2> is the ordinal position of the first retrieved field in the record

structure, or the field name. If omitted, values of the first field are stored into the

array.

<expN3>|<expC3> is the ordinal position of the second retrieved field in the record

structure, or the field name. If omitted, values of the second field are stored into

the array.

OBJ 330

<exp4> is a "seek" expression for searching for the first value to retrieve, equivalent

to executing the oRdd:SEEK() method with the same parameter. If not specified,

the storage of field values starts at the current record, considering the global

scope, according to chapter 6.1.

Returns: <retA> is a two-dimensional array with the retrieved field values. If the end-

of-file is reached or the scope is out of range before the given record count is

proceeded, the array size is adapted accordingly. If no record is found, the

LEN(retA) is 0.

Example:

 oMyDbf := DBSERVERNEW ("address")
 if oMyDbf:USED .and. oMyDbf:SETINDEX("addrname")
 aField := GETLOOKUPTABLE (500, "First", "Name", "SMITH")
 ? "All Smith's:"
 AEVAL (aField, {|elem| QOUT(elem[1], elem[2]) })
 endif

Compatibility: The VO symbols for the 2nd and 3rd argument are not supported by

FS.

Related: FIELDGET(), oRdd:FIELDGET(), oRdd:GETARRAAY(), oRdd:GET-

ARRFIELDS()

oRdd:GOBOTTOM () ─> retL Method

Moves the database pointer to the last logical record. Equivalent to and invoked from

the GO BOTTOM command and the DBGOBOTTOM() function.

retL = oRdd:GOBOTTOM ()

Returns: <retL> signals success. On error, FALSE is returned, which reports that the

database is empty, or the conditional index, general filters or scope do not match

any record of the database.

Related: GOBOTTOM, oRdd:GOTO(), oRdd:GOTOP(), oRdd:SKIP()

oRdd:GOTO (expN1) ─> retL Method

Moves the database pointer to the specified record. Equivalent to and invoked from

the GO TO command and the DBGOTO() function.

retL = oRdd:GOTO (expN1)

Arguments: <expN1> is the record number at which the server should be positioned.

Neither the filters, nor global scope according to chapter 6.1 apply for this fix-

record movement.

Returns: <retL> signals success. On error, FALSE is returned, which reports that the

specified record is out of the current database size.

 OBJ 331

Related: GOTO, oRdd:GOTOP(), oRdd:GOBOTTOM(), oRdd:SKIP()

oRdd:GOTOP () ─> retL Method

Moves the database pointer to the first logical record. Equivalent to and invoked from

the GO TOP command and DBGOTOP() function.

retL = oRdd:GOTOP ()

Returns: <retL> signals the success. On error, FALSE is returned, which reports that

the database is empty, or the conditional index, general filters or scope do not

match any record of the database.

Related: GOTOP, oRdd:GOTO(), oRdd:GOBOTTOM(), oRdd:SKIP()

oRdd:HEADER ─> expN Access

Determines the size of the database file header in bytes. Equivalent to and invoked

from the HEADER() function or the oRdd:INFO(DBI_GETHEADERSIZE) method.

Related: HEADER(), oRdd:INFO()

oRdd:INDEXCHECK ([expN1]) ─> retN Method

Checks the index integrity, whether the database is consistent with its associated

indices. Equivalent to and invoked from the INDEXCHECK() function.

retN = oRdd:INDEXCHECK ([expN1])

Options: <expN1> is the ordinal position of the index in the list of currently open

indices, starting at one. Zero specifies the current controlling index, which is the

default value, if the argument is not given.

Returns: <retN> is a numeric value indicating the integrity status of the index file: -1

signals error, 0 a correct integrity, 1 a possible corruption, 2 a found integrity

corruption. See the additional description in the INDEXCHECK() function and in

section LNG.4.5.

Compatibility: Not available in VO.

Related: INDEXCHECK()

oRdd:INDEXCOUNT ─> expN Access

Determines the number of open indices (0...15) used in this RDD. Equivalent to and

invoked from the INDEXCOUNT() function.

Compatibility: Not available in VO.

Related: INDEXEXT(), oRdd:INFO()

OBJ 332

oRdd:INDEXEXT ─> expC Access

Determines the default extension of index files of this RDD driver, e.g. ".idx" for the

DBFIDX server. Equivalent to and invoked from the INDEXEXT() function or the

oRdd:INFO(DBI_INDEXEXT) method.

Related: INDEXEXT(), oRdd:INFO()

oRdd:INDEXKEY ─> expC Access

Determines the key expression of the current controlling index. Equivalent to the

INDEXKEY() function or the oRdd:INDEXKEY(0) method.

Compatibility: Not available in VO.

Related: INDEXKEY(), oRdd:INDEXKEY()

oRdd:INDEXKEY (expN1) ─> retC Method

Determines the key expression of a specified index. Equivalent to and invoked from

the INDEXKEY() function.

retC = oRdd:INDEXKEY (expN1)

Arguments: <expN1> is the ordinal position of the index in the list of currently open

indexes, starting at one. Zero specifies the current controlling index, equivalent

to the oRdd:INDEXKEY instance.

Returns: <retC> is the required key expression, stored in the index file header by

oRdd:CREATEINDEX() or oRdd:CREATEORDER(). On error, i.e. if no index file is

open, null string "" is returned.

Related: INDEXKEY(), oRdd:INDEXKEY

oRdd:INDEXORD () ─> retN Method

Returns the ordinal position of the controlling order in the order list. Equivalent to and

invoked from the INDEXORD() function.

Returns: <retN> is equal to the position of the controlling index in the list of open

indexes for the current work area. A zero value indicates that the current

database is treated in the natural order.

Related: INDEXORD(), SET ORDER, oRdd:SETORDER(), oRdd:SETINDEX()

 OBJ 333

oRdd:INFO (expN1...) ─> ret Method

Returns and optionally changes information about a data server. Additional

information is also available by invoking the oRdd:ORDERINFO() method.

ret = oRdd:INFO (expN1, [exp2])

Arguments: <expN1> is a numeric value or a constant (preferred, see "rddsys.fh")

specifying the type of the information.

Constant Value Ret Returns Change

DBI_ALIAS 33* retC alias name = oRdd:ALIAS yes

DBI_ACCESSRIGHTS 5000* retN dbf access rights from

DBSERVERNEW() in octal

representation,e.g. 644 for rw-r--r--

no

DBI_BOF 26 retL BOF status = oRdd:BOF yes

DBI_CANPUTREC 2 retL Replace supported by RDD ? no

DBI_CHILDCOUNT 22 retN number of open relations no

DBI_DBFILTER 28 retC global filter = oRdd:FILTER yes

DBI_DB_VERSION 101 retN release of the host RDD driver no

DBI_EOF 27 retL EOF status = oRdd:EOF yes

DBI_FCOUNT 30 retN no. of fields = oRdd:FCOUNT no

DBI_FILEHANDLE 23 retN the used file handle no

DBI_FILTERBLOCK 5001 retB global filter, code block, set by

oRdd:SETFILTER()

yes

DBI_FOUND 29 retL FOUND status = oRdd:FOUND yes

DBI_FULLPATH 24 retC dbf name incl.path no

DBI_GETDELIMITER 5 retC delimiter for oRdd:COPYDELI../

oRdd:APPENDDELIMITED()

yes

DBI_GETHEADERSIZE 3 retN header size = oRdd:HEADER no

DBI_GETLOCKARRAY 8 retA array of RLOCKs() =

oRdd:RLOCKLIST

no

DBI_GETRECSIZE 7 retN record size = oRdd:RECSIZE no

DBI_GETSCOPE 34 retB locate condition =

oRdd:GETLOCATE()

yes

DBI_HAS_DBT 5020* retL .DBT memo file structure ? no

DBI_HAS_DBV 5021* retL .DBV memo file structure ? no

DBI_HAS_FPT 5022* retL .FPT memo file structure ? no

DBI_INDEXEXT 5002* retC default extension of the index file,

e.g. ".idx". See oRdd:ORDERINFO()

yes

DBI_ISANSI 25 retL the database supports ANSI PC-8

char set, ISO otherwise

no

DBI_ISDBF 1 retL is the .dbf format supported? no

DBI_ISFLOCK 20 retL is FLOCK() active? no

DBI_LASTUPDATE 4 retD date of last .dbf modif. no

DBI_LOCKCOUNT 31 retN number of RLOCKed() records no

DBI_LOCK_MODE 5016* retN locking scheme currently used no

DBI_MEMOBLOCKSIZE 39 retN block size of .dbt file no

OBJ 334

DBI_MEMOEXT 37 retC default extension of the memo file,

e.g. ".dbt"

yes

DBI_MEMOHANDLE 38 retN handle no. of memo file no

DBI_RDD_VERSION 102 retN release no. of this RDD no

DBI_READONLY 203* retL is database open read-only? no

DBI_RELAT_COUNT 5017* retN number of relations in current WA no

DBI_SETDELIMITER 6 retC equiv.to DBI_GETDELIMITER yes

DBI_SHARED 36 retL shared usage = oRdd:SHARED no

DBI_TABLEEXT 9 retC default extension of the database

file, e.g. ".dbf"

yes

DBI_VALIDBUFFER 32 retL is the access buffer valid? no

DBI_USER 1000* retN users active = USERSDBF() no

Options: <exp2> is the new value to be set. Considered only when the value is

changeable (see table above).

Compatibility: Items marked with "*" perform extended functionality or are not

supported by VO.

Returns: <ret> is the required information or the current setting before resetting. If

<expN1> is invalid, NIL is returned.

Example:

 oMyDbf := DBSERVERNEW ("address")
 // or: USE address ; oMyDbf := DbObject()
 if oMyDbf:USED
 ? "The " + oMyDbf:INFO(DBI_FULLPATH) + ;
 " database is open in " + ;
 if (oMyDbf:SHARED, "", "non-") + "shared, read-" + ;
 if (oMyDbf:READONLY, "only", "write") + " mode and " + ;
 str(oMyDbf:INFO(DBI_ACCESSRIGHTS),3) + " permission."
 ? "The RDD " + oMyDbf:RDDNAME + ", rel." + ;
 ltrim(str(oMyDbf:INFO(DBI_RDD_VERSION),6,2) + " does " + ;
 if (oMyDbf:INFO(DBI_CANPUTREC), "", "not") + ;
 " support APPENDing and REPLACEing."
 endif

Related: most of these information is also handled by other instances and methods

or functions.

oRdd:INIT (expC1...) ─> SELF Method

Initializes the object and its default values, opens the database, passes data to the

FlagShip run-time system. This method is invoked automatically from

DBSERVERNEW(), you should not invoke it manually. See the additional description

in section LNG.11.3 and RDD.2.3.1. To ensure its functionality, a class inheriting this

one should invoke the SUPER:INIT(...) method, if a separate oRdd:INIT() method is

specified.

 OBJ 335

retO = oRdd:INIT (expC1, [expL2], [expL3], [expC4],
[expA5], [expL6])

Arguments: <expC1> is equivalent to the first DBSERVERNEW() argument.

Options: <expL2>...<expL6> are equivalent to the 2nd to 6th DBSERVERNEW()

optional arguments.

Returns: <retO> is the server object SELF.

Related: DBSERVERNEW(), oRdd:AXIT(), <FlagShip_dir>/system/rddcb4a.c

available in the .../RDDcb4.tar.Z file.

oRdd:ISRELATION <─> expL Access/Assign

Determines if a relation is active (TRUE), or temporarily activates/deactivates all

relations set with the oRdd:SETRELATION() method or SET RELATION command.

Assigning FALSE temporarily disables the relation movement and evaluation, whilst

TRUE activates it again.

Compatibility: not available in CA/VO.

Related: oRdd:RELATION(), oRdd:SETRELATION(), oRdd:RELATIONOBJECT(),

SET RELATION

oRdd:JOIN (expC1...) ─> retL Method

Creates a new database by merging certain specified records with another database

(or DBserver). Equivalent to the JOIN command.

retL = oRdd:JOIN (expC1|expO1, expC2|expO2,
[expA3], [expB4])

Arguments: <expC1>|<expO1> specifies the second source, an already opened

database, which should be merged with the current DBserver. The argument is

either the alias name <expC1>, or the RDD object <expO1>.

<expC2>|<expO2> is the database file name or RDD object of the target database,

holding the merging results.

Options: <expA3> is an array of fields to be included in the join operation, similar to

the FIELDS clause of JOIN. If omitted, all records are included.

<expB4> is the condition evaluated for each record in the scope; if TRUE, the record

is included in the processing. It provides the same functionality as the FOR

clause of record processing commands. If not specified, the global scope

according to chapter 6.1 is considered. If not available, the target database

contains the product of records of both source files.

Returns: <retL> signals success, otherwise FALSE is returned.

OBJ 336

Multiuser: if the <expO2> database is opened (or the class instantiated) in SHAREd

mode, at least FLOCK() is required, if oRdd:CONCURRENCY is set to 0. The newly

created database <expC2> is opened in exclusive mode.

Related: JOIN

oRdd:LASTREC ─> expN Access

Specifies the number of records in the current database. Filtering commands such

as SET FILTER or SET DELETED have no effect on the return value. Equivalent to and

invoked from the LASTREC() or RECCOUNT() function.

Related: LASTREC(), RECCOUNT()

oRdd:LOCATE ([expC1...]) ─> retL Method

Searches for the first record meeting the specified condition. Equivalent to and

invoked from the LOCATE command.

retL = oRdd:LOCATE ([expC1|expB1], [expC2|expB2],
[expN3|expL3])

Options: <expC1>|<expB1> is equivalent to the FOR scope of LOCATE. The

condition, given as a string or code block, is evaluated for each record of the

scope. This condition is used for subsequent CONTINUE operations and may

be retrieved or modified by the oRdd:GETLOCATE(), oRdd:INFO

(DBI_GETSCOPE) or cleared by the oRdd:CLEARLOCATE() method.

<expC2>|<expB2> is equivalent to the WHILE scope. The condition, given as a

string or code block, is evaluated for each record from the current position until

<expB2> returns FALSE. This condition is not used for subsequent CONTINUE

operations.

<expN3>|<expL3> is the range of records, providing the same functionality as the

ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope

values. This condition is not used for subsequent CONTINUE operations.

Scope: If none of the arguments 1 to 3 are specified, the global source server scope

is used, see chapter 6.1.

Returns: <retL> signals success, if TRUE, or failure otherwise. If the search was

successful, the matching record becomes the current record, and this method,

the FOUND() function or oRdd:FOUND instance returns TRUE. If not found, the

record pointer is positioned on EOF or the next record outside the FOR scope,

and FALSE is returned.

Related: LOCATE, CONTINUE, oRdd:CONTINUE(), oRdd:CLEARLOCATE(),

oRdd:FOUND, oRdd:INFO()

 OBJ 337

oRdd:LOCKCURRENTRECORD () ─> retL Method

Locks the current record to perform a write access or to protect this record against

write access from another user or process. Meaningful in SHAREd mode only.

Equivalent to and invoked from the RLOCK() function, or identical to invoking the

oRdd:RLOCK(oRdd:RECNO) method. The superset of this method is

oRdd:RLOCKVERIFY().

Returns: <retL> signals success. On error, FALSE is returned, which reports that the

database is FLOCKed or the record RLOCKed by another user, application or

DBserver, or that the record pointer is on EOF.

Multiuser: if the database is opened in SHAREd mode, and the automatic locking is

disabled (oRdd:CONCURRENCY is set to 0), RLOCK() is required prior to write

accessing a single record. If oRdd:CONCURRENCY is active, RLOCK() overrides the

automatic locking and the lock remains active until oRdd:UNLOCK() is executed. If the

database is opened in EXCLUSIVE mode (the default), no locking is required and

RLOCK() is ignored.

Related: RLOCK(), oRdd:RLOCK(), Rdd:RLOCKLIST, oRdd:RLOCKVERIFY(),

oRdd:UNLOCK(), oRdd:CONCURRENCY

oRdd:LUPDATE ─> expD Access

Retrieves the last modification date of the database file. Equivalent to and invoked

from the LUPDATE() function.

Related: LUPDATE(), oRdd:INFO(DBI_LASTUPDATE)

oRdd:NAME ─> expC Access

Returns the main part of the used database file name. It returns e.g. "MyFile" for the

obj := DBSERVER {"MyFile"} usage, also if a path or extension was specified; or

"myfile" when the file is named "myfile.dbf" and fs_set("lower",.T.) is active. Refer to

oRdd:INFO(DBI_FULLPATH) for the full naming information.

oRdd:NOIVARGET (expC1) ─> ret Method

Provides general error interception that is automatically called (in any class)

whenever an access reference is made to a non-existent exported instance variable

or Access method, see also LNG.2.11.3. In the DBServer class, it is used to

implement the access to a virtual field variable (since the name is known first at run-

time). This method is called by the FIELDGET() method, it should not be called

directly from the application.

ret = oRdd:NOIVARGET (expC1)

Arguments: <expC1> is the name of the referenced instance, e.g. the field name.

OBJ 338

Returns: <ret> is the contents of the virtual instance (i.e. the field contents). If the

instance (the field) or Access method does not exist, a run-time error occurs and

is reported via the oRdd:ERROR() method if available, or via the standard error

handler otherwise.

Compatibility: symbolic names of VO are not supported.

Related: oRdd:NOIVARPUT(), oRdd:FIELDGET(), oRdd:ERROR(), <ret> :=

<expC1>

oRdd:NOIVARPUT (expC1...) ─> retL Method

Provides general error interception that is automatically called (in any class)

whenever an assign reference is made to a non-existent exported instance variable

or Assign method, see also LNG.2.11.3. In the DBServer class, it is used to

implement the assign to a virtual field variable (since the name is known first at run-

time). This method is called by the FIELDPUT() method, it should not be called directly

from the application.

retL = oRdd:NOIVARPUT (expC1, exp2)

Arguments: <expC1> is the name of the referenced instance, e.g. the field name.

<exp2> is the value to assign to the field. The data type must be equivalent or

compatible to the datatype of the field.

Returns: <retL> signals success. On error, FALSE is returned, which reports e.g. a

lock failure according to oRdd: FIELDPUT().

Compatibility: symbolic names of VO are not supported.

Related: oRdd:NOIVARGET(), oRdd:FIELDPUT(), <expC1> := <exp2>, REPLACE

oRdd:NOMETHOD (expC1...) ─> ret Method

Provides general error interception that is automatically called (in any class)

whenever a method reference is made to a non-declared method, see also

LNG.2.11.3. In the DBServer class, it is used to display an RTE error, if the method

does not exist. This method is called by the FlagShip run-time system, it should not

be called directly from the application.

ret = oRdd:NOMETHOD (expC1, exp2...)

Arguments: <expC1> is the name of the referenced method.

<exp2>...<expN> are the parameters passed to the virtual method.

Returns: <ret> is the value returned from the variable method. If no such method

exist, a run-time error occurs and is reported via the oRdd:ERROR() method if

available, or via the standard error handler otherwise.

Compatibility: not supported by VO.

 OBJ 339

oRdd:ORDERBOTTOMSCOPE <─> exp Access/Assign

A value, controlling the last visible index key of the current selected order and is

considered for all database movement operations. Together with oRdd:

ORDERTOPSCOPE, it allows to "filter" the index for a specified range of index keys.

Assigning NIL (the default value) to the instance will reset the bottom boundary to the

last available key. See example in oRdd:ORDERSCOPE().

Related: SKIP, GOBOTTOM, oRdd:ORDERTOPSCOPE, oRdd:ORDERCOPE()

oRdd:ORDERDESCEND ([expN1...]) ─> retL Method

Returns or dynamically changes the descending flag of an order, regardless of the

original indexing strategy.

retL = oRdd:ORDERDESCEND ([expN1|expC1], [expC2],
[expL3])

Options: <expN1>|<expC1> is the ordinal position of the order in the list of open

indices (similar to SET ORDER), or the order name. If omitted, the controlling

order is assumed.

<expC2> is the name of the index file, if <expC1> was specified.

<expL3> is the new, temporary descending flag. Specifying TRUE dynamically turns

on the descending sequence, regardless of the indexing method. It is considered

for all movement and search operations. Similarly, FALSE dynamically activates

an ascending order sequence. This flag does not affect the stored/replaced

sequence order, but the current database movement only.

Returns: <retL> is the current descending flag, or the value of the previous setting.

Example:

 oAdr := DBSERVER {"address"}
 if !oAdr:USED ; return ; endif
 oAdr:SETINDEX("adrname")

 flag := oAdr:ORDERDESCEND()
 ? "Default" ; oAdr:GOTOP() ; mydisplay (oAdr, 10, flag)
 flag := oAdr:ORDERDESCEND(,,!flag)
 ? "New" ; oAdr:GOTOP() ; mydisplay (oAdr, 10, flag)

 function mydisplay (oRdd AS DBSERVER, max, flag)
 LOCAL oii := 1
 ?? " = " + if(flag, "des","as") + "cending order"
 oRdd:EVAL ({|| QOUT(oRdd:name)},,{|| ii++, if(ii <= max,.T.,F.)})
 return NIL

Related: SKIP, GOTOP, GOBOTTOM, SEEK, LOCATE

OBJ 340

oRdd:ORDERINFO (expN1...) ─> ret Method

Returns and optionally changes information about orders and index files.

ret = oRdd:ORDERINFO (expN1, [expC2],
[expN3|expC3], [exp4])

Arguments: <expN1> is a numeric value or constant (preferred, see "rddsys.fh")

specifying the type of information.

rddsys.fh Value Ret Returns Change

DBOI_CONDITION 1 retC order condition string no

DBOI_CUSTOM 45 retL custom RDD order built ? *yes

DBOI_DBFNAME 5001 retC FS only, dbf name of INDEX *no

DBOI_EXPRESSION 2 retC order expression string no

DBOI_FILEHANDLE 21 retN file handle no *no

DBOI_FULLPATH 20 retC full path & name no

DBOI_HPLOCKING 29 retL high perform CA/VO lock *no

DBOI_INDEXCHECK 5002 retN FS only, index ok? *no

DBOI_INDEXEXT 8 retC index extension (".cdx") yes

DBOI_INDEXNAME 7 retC index file name main part no

DBOI_ISCOND 23 retL condition flag set ? no

DBOI_ISDESC 22 retL descending flag set? no

DBOI_KEYCOUNT 26 retN no.of records in the order *no

DBOI_KEYDEC 28 retN no.of decimals in the key no

DBOI_KEYSINCLUDED 48 retN no.of keys of cond.index no

DBOI_KEYSIZE 25 retN size of the key no

DBOI_KEYTYPE 24 retC type of the key no

DBOI_KEYVAL 38 ret value of the current key *no

DBOI_LOCKOFFSET 35 retL lock offset NewIndexLock() *no

DBOI_NAME 5 retC order name no

DBOI_NUMBER 6 retN posit.of the order in list no

DBOI_ORDERCOUNT 44 retN no.of orders in the file no

DBOI_POSITION 3 retN logical record no.in order *no

DBOI_RECNO 4 retN physic. record no.in order no

DBOI_SCOPEBOTTOM 40 ret bottom boundary value or NIL *no

DBOI_SCOPETOP 39 ret top boundary value or NIL *no

DBOI_SETCODEBLOCK 27 retB key converted to code block no

DBOI_UNIQUE 43 retL unique flag set? no

Options: <expC2> is the name of the index file, if <expN3> is specified.

<expN3>|<expC3> is the ordinal number specifying the order position in the open

order list, or the order name. If neither argument 2 nor argument 3 is specified

or is NIL, the controlling order is assumed.

<exp4> is the new value to be set.

 OBJ 341

Returns: <ret> is the required information or the current value setting before resetting.

If <expN1> is invalid, NIL is returned.

Example:

 SET PATH TO ./;/usr/data;/tmp
 oAdr := DBSERVER {"address"}
 if !oAdr:USED ; return ; endif
 oAdr:SETINDEX("adrname")
 oAdr:SETINDEX("adrcity")

 ? oAdr:INFO(DBI_NAME) // "address"
 ? oAdr:ORDERINFO(DBOI_FULLPATH) // "/usr/data/adrname.idx"
 oAdr:SETORDER(2)
 ? oAdr:ORDERINFO(DBOI_FULLPATH) // "/tmp/adrcity.idx"
 ? oAdr:ORDERINFO(DBOI_EXPRESSION) // "str(zip,5)+name"
 ? INDEXKEY() // "str(zip,5)+name"

Compatibility: The items marked with "*" cannot be set by the default RDD driver.

Related: the results are equivalent to several Access/Assign instances or DBserver

Methods, especially oRdd:ORDER*(). For additional settings, see also

oRdd:INFO(), oRdd:RECINFO() and oRdd:RDDINFO() methods as well as the

SET() and INDEX*() functions .

oRdd:ORDERISUNIQUE ([expN1...]) ─> retL Method

Returns the status of the unique flag for a given order. Equivalent to invoking the

oRdd:ORDERINFO(DBOI_UNIQUE) method.

retL = oRdd:ORDERISUNIQUE ([expN1|expC1], [expC2])

Options: <expN1>|<expC1> is the ordinal position of the order in the list of open

indices (similar to SET ORDER), or the order name. If omitted, the controlling

order is assumed.

<expC2> is the name of the index file, if <expC1> was specified.

Returns: <retL> is the unique flag of the order, set on indexing.

Related: oRdd:ORDERINFO(), oRdd:SETORDER(), oRdd:CREATEORDER(),

oRdd:CREATEINDEX(), INDEX ON, SET UNIQUE

oRdd:ORDERKEYCOUNT ([expN1...]) ─> retN Method

Returns the number of keys (records) in an order. Equivalent to invoking the

oRdd:ORDERINFO(DBOI_KEYCOUNT) method.

retN = oRdd:ORDERKEYCOUNT ([expN1|expC1], [expC2])

OBJ 342

Options: <expN1>|<expC1> is the ordinal position of the order in the list of open

indices (similar to SET ORDER), or the order name. If omitted, the controlling

order is assumed.

<expC2> is the name of the index file, if <expC1> was specified.

Returns: <retN> is the number of keys (database records) included in the order. If

the order is not conditional or unique, and no scope has been set for it, the return

value is equal to oRdd:RECCOUNT. Note, that depending on the RDD, the key

counting may be a time consuming task for large indices.

Related: oRdd:ORDERINFO(), oRdd:SETORDER(), oRdd:CREATEORDER(),

oRdd:CREATEINDEX(), oRdd:RECCOUNT, INDEX ON, SET UNIQUE

oRdd:ORDERKEYGOTO (expN1) ─> retL Method

Moves to a record specified by its logical record number in the controlling order.

retL = oRdd:ORDERKEYGOTO (expN1)

Arguments: <expN1> is the logical record number. If the value specified does not

satisfy the scope or FOR condition for the order, the record pointer is positioned

at the end-of-file.

Returns: <retL> reports success. It returns FALSE if the <expN1> is out of range.

Related: oRdd:SKIP(), oRdd:GOTOP(), oRdd:GOBOTTOM(),

oRdd:ORDERKEYCOUNT(), oRdd:ORDERKEYNO()

oRdd:ORDERKEYNO ([expN1...]) ─> retN Method

Returns the logical record number of the current record. Equivalent to invoking the

oRdd:ORDERINFO(DBOI_POSITION) method.

retN = oRdd:ORDERKEYNO ([expN1|expC1], [expC2])

Options: <expN1>|<expC1> is the ordinal position of the order in the list of open

indices (similar to SET ORDER), or the order name. If omitted or NIL, the

controlling order is assumed.

<expC2> is the name of the index file, if <expC1> was specified.

Returns: <retN> is the relative position of the current record in the specified order.

Zero is returned if the current record is out of scope or positioned on EOF().

Related: oRdd:ORDERINFO(), oRdd:SETORDER(), oRdd:CREATEORDER(),

oRdd:CREATEINDEX(), oRdd:ORDERKEYGOTO()

 OBJ 343

oRdd:ORDERKEYVAL ─> exp Access

Returns the value of the current index (order) key. This value and its type is equivalent

to macro-evaluating the &(INDEXKEY()) function or to invoking the oRdd:

ORDERINFO(DBOI_KEYVAL) and oRdd:ORDERINFO(DBOI_KEYTYPE) methods.

Related: oRdd:ORDERINFO(), INDEXKEY()

oRdd:ORDERSCOPE (expN1...) ─> ret Method

Sets the boundaries for scoping key values in the controlling order.

ret = oRdd:ORDERSCOPE (expN1, [exp2])

Arguments: <expN1> is a numeric value or constant (preferred, see "rddsys.fh")

specifying the type of information.

Constant Value Specifies

TOPSCOPE 0 top of the index boundary

BOTTOMSCOPE 1 bottom of the index boundary

Options: <exp2> is the new top or bottom value to be set. The comparison of the

current key against the top/bottom boundary is performed by the usual <= and >=

relational operators, similar to ok := IF (oRdd:ORDERKAYVAL >= <top-

boundary> .and. oRdd:ORDERKAYVAL <= <bottomboundary>), therefore the

comparison rules according to section LNG.2.9 apply. Omitting this argument or

specifying it NIL resets the boundary to its original default (the first or last logical

record) position.

Returns: <ret> is the current set boundary value (before resetting), equivalent to

oRdd:ORDERINFO(DBOI_SCOPE*). If <expN1> is invalid or not set, NIL is

returned.

Example:

 oAdr := DBSERVER {"address"}
 oAdr:SETINDEX("adrname")
 oAdr:ORDERINFO(DBOI_EXPRESSION) // "upper(NAME)"
 oAdr:GOTOP() ; ? oAdr:Name // "Anders"
 oAdr:GOBOTTOM() ; ? oAdr:Name, Name // "address", "Zulu"
 oAdr:ORDERSCOPE(TOPSCOPE, padr("MILLER",20))
 oAdr:ORDERSCOPE(BOTTOMSCOPE, "S")
 SET EXACT OFF // soft comparison
 oAdr:GOTOP() ; ? oAdr:Name // "Miller"
 oAdr:GOBOTTOM() ; ? oAdr:Name // "Smith"

Related: oRdd:GOTOP(), oRdd:GOBOTTOM(), oRdd:SKIP(),

oRdd:ORDERKEYGOTO(), oRdd:ORDERINFO(), oRdd:ORDERKEYCOUNT(),

oRdd:BOTTOMSCOPE, oRdd:TOPSCOPE, oRdd:SEEK(), oRdd:LOCATE(),

SKIP, GO TOP, GO BOTTOM, FIND, SEEK, LOCATE

OBJ 344

oRdd:ORDERSKIPUNIQUE ([expN1]) ─> retL Method

Moves the record pointer to the next or previous keys which differs from the current

one, regardless of the UNIQUE index flag. Note that for many equivalent keys, a

UNIQUE indexed order may result in faster movement than this filtering.

retL = oRdd:ORDERSKIPUNIQUE ([expN1])

Options: <expN1> is the skip direction, similar to the oRdd:SKIP(). Positive values

skip forward in the end-of-file direction, negative backward. If not specified, 1 is

assumed.

Returns: <retL> reports the success. It returns FALSE if the EOF() or

BOF() is reached. Example:

 oAdr := SEEK ("MILLER ")
 while !eof() .and. "MILLER" == upper(trim(oAdr:Name))
 oAdr:SKIP()
 enddo
 ? oAdr:Name // Millerman
 * is equivalent to:
 oAdr := SEEK ("MILLER ")
 oAdr := ORDERSKIPUNIQUE()
 ? oAdr:Name // Millerman

Related: oRdd:SKIP(), oRdd:EOF, oRdd:BOF, oRdd:ORDESCOPE(),

oRdd:ORDERINFO(), oRdd:ORDERISUNIQUE()

oRdd:ORDERTOPSCOPE <─> exp Access/Assign

A value, controlling the first visible index key of the currently selected order and

considered for all database movement operations. Together with oRdd:ORDER-

BOTTOMSCOPE, it allows to "filter" the index for a specified range of index keys.

Assigning NIL (the default value) to the instance will reset the top boundary to the

first available key. See example in oRdd:ORDERSCOPE().

Related: oRdd:ORDERSCOPE(), oRdd:ORDERBOTTOMSCOPE, SKIP, GO TOP

oRdd:PACK () ─> retL Method

Removes all records marked for deletion from the DBserver database. Equivalent to

the PACK command.

retL = oRdd:PACK ()

Returns: <retL> signals the success.

Multiuser: the database must be opened (or the class instantiated) in EXCLUSIVE

mode.

 OBJ 345

Related: PACK, DELETE, oRdd:DELETE()

oRdd:QUICKFIELDGET (...) ─> ret Method

Retrieves a field value, by knowing the internal field address. This method is used

internally in the RDD and compiler (instead of FieldGet for accessing a field by name),

if specified. It is NOT designed for use by the user's .prg program, use

oRdd:FIELDGET() instead. See the rddcb4a.c and rddcb4b.c files for additional

descriptions, if required. This method is NOT a part of the default DataServer class.

oRdd:QUICKFIELDPUT (...) ─> ret Method

Stores a value into a field, by knowing the internal field address. This method is used

internally in the RDD and compiler (instead of FieldPut for assigning a field by name),

if specified. It is NOT designed for use by the user's .prg program, use

oRdd:FIELDPUT() instead. See the rddcb4a.c and rddcb4b.c files for additional

descriptions, if required. This method is NOT a part of the default DataServer class.

oRdd:RDDINFO (expN1...) ─> ret Method

Returns and optionally changes information about the currently used RDD.

ret = oRdd:RDDINFO (expN1, [exp2])

Arguments: <expN1> is a numeric value or constant (preferred, see "set.fh")

specifying the type of information.

Constant Value Ret Description Change

_SET_AUTOOPEN 104 retL automatically opens the

production indices together with

the .dbf

*yes

_SET_AUTOORDER 105 retN 1

0

specifies, that the production

index automatically sets the

controlling order. indicates the

requirement of SETORDER()

invocation

*yes

_SET_AUTOSHARE 108 retN 0

1

2

disables the automatic sharing

control, it overrides the SET

AUTOLOCK command. will use

the files in the specified mode.

will open all files in exclusive

mode, overriding the SET

EXCLUSIV command and the

SHARE clause.

E *yes

_SET_DEFAULTRDD 102 retC returns the name of the default

RDD driver, equivalent to

RDDSETDEFA() function

no

OBJ 346

_SET_HPLOCKING 106 retL not used in FlagShip *yes

_SET_MEMOBLCKSIZE 101 retN block size (in bytes) of the

memo file (.dbt)

*yes

_SET_MEMOEXT 103 retC extension of the memo file,

equiv. to oRdd:ORDERINFO

(DBOI_INDEXEXT)

yes

_SET_NEWINDEXLOCK 107 retL not used in FlagShip *yes

_SET_OPTIMIZE 111 retL additional index optimization

available?

*yes

_SET_STRICTREAD 109 retL not used in FlagShip *yes

Options: <exp2> is the new value to be set.

Returns: <ret> is the required information or the current value before resetting. If

<expN1> is invalid, NIL is returned.

Compatibility: Setting the items marked with "*" is ignored by the default RDD driver

DBFIDX.

Related:oRdd:INFO(), oRdd:RECINFO(), SET() and INDEX*() functions

oRdd:RDDNAME ─> expC Access

Returns a string representing the name of the RDD. The server can be specified as

a parameter during instantiation, or by invoking the RDDSETDEFAULT() or

DBSETDRIVER() function. If not set, "DBFIDX" is the default driver.

Related: RDDSETDEFAULT(), DBSETDRIVER()

oRdd:READONLY ─> expL Access

Returns a logical value indicating whether the file was opened as a read-only file

during the instantiation.

Related: DBDERVERNEW(), USE, DBUSEAREA()

oRdd:RECALL ([expC1...]) ─> retL Method

Reinstates the current, DELETEd record or a range of records according to the given

scope. Equivalent to and invoked from the RECALL command or the DBRECALL()

function.

retN = oRdd:RECALL ([expC1|expB1], [expC2|expB2],
[expN3|expL3])

Options: <expC1>|<expB1> is equivalent to the FOR clause of RECALL. The

condition, given as a string or code block, is evaluated for each record of the

source scope.

 OBJ 347

<expC2>|<expB2> is equivalent to the WHILE scope. The condition, given as a string

or code block, is evaluated for each record from the current position until

<expB2> returns FALSE.

<expN3>|<expL3> is the range of records, providing the same functionality as the

ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: If none of the arguments 1 to 3 are specified, the global scope of the current

server is used, see chapter 6.1. If not set, the current record is RECALLed.

Returns: <retL> signals success, if TRUE, or failure (e.g. failed lock) otherwise. Non-

deleted records are ignored.

Multiuser: if the database is opened (or the class instantiated) in SHAREd mode, at

least RLOCK() for deleting a single record, or FLOCK() for multiple record processing

is required, if oRdd:CONCURRENCY is set to 0.

Related: DELETE, DBDELETE(), DELETED(), oRdd:DELETEALL(),

oRdd:DELETED, oRdd:CONCURRENCYCONTROL

oRdd:RECALLALL () ─> retL Method

Reinstates all DELETEd records of the database table. Equivalent to the DELETE ALL

command or the oRdd:GOTOP() ; oRdd:DELETE({|| .T.}) sequence.

Scope: The global scope according to chapter 6.1 does not apply. Returns: <retL>

signals success, if TRUE, or failure (e.g. failed lock) otherwise.

Multiuser: if the database is opened (or the class instantiated) in SHAREd mode,

FLOCK() is required, if oRdd:CONCURRENCY is set to 0.

Related: RECALL, DBRECALL(), DELETED(), oRdd:RECALL(), oRdd:DELETE(),

oRdd:DELETED, oRdd:CONCURRENCYCONTROL

oRdd:RECCOUNT ─> expN Access

Returns the number of physical records in the database. Equivalent to and invoked

from the RECCOUNT() or LASTREC() function.

Related: RECCOUNT(), LASTREC(), oRdd:RECORDINFO()

oRdd:RECNO <─> expN Access/Assign

A numeric value, representing the current record number. Equivalent to and invoked

from the RECNO() function. Assigning a value to oRdd:RECNO is equivalent to

executing the GOTO() method or DBGOTO() function. See additional details in the

RECNO() function.

OBJ 348

Related: oRdd:RECCOUNT, oRdd:GOTO(), oRdd:RECORDINFO(), RECNO(), GO

TO, DBGOTO()

oRdd:RECORDINFO (expN1...) ─> ret Method

Returns information about the current or specified record.

ret = oRdd:RECORDINFO (expN1, [expN2])

Arguments: <expN1> is a numeric value or constant (preferred, see "rddsys.fh")

specifying the type of information.

Constant Value Ret Description

DBRI_DELETED 1 retL is record deleted?

DBRI_LOCKED 2 retL is record locked?

DBRI_RECSIZE 3 retN record size in bytes

DBRI_RECNO 4 retN current record number

Options: <expN2> is the record number for which information is to be retrieved. If

omitted or set to zero (0) or NIL, the current record is assumed.

Returns: <ret> is the required information or the current or specified record. If

<expN2> is out of range, NIL is returned.

Related:oRdd:DELETED, oRdd:RECSIZE, oRdd:INFO(), SET() and INDEX*()

functions

oRdd:RECSIZE ─> expN Access

Returns the record size in bytes. Equivalent to and invoked from the RECSIZE()

function.

Related: RECSIZE()

oRdd:REFRESH () ─> retL Method

Rereads the current record from the database, discarding (undo) any changes that

have been made. However, it cannot roll back changes that have been committed

with the oRdd:COMMIT(), oRdd:SKIP() or with the associated commands and

functions.

retL = oRdd:REFRESH ()

Returns: <retL> signals success.

Related: oRdd:COMMIT(), oRdd:SKIP(), COMMIT, SKIP, DBCOMMIT()

 OBJ 349

oRdd:REINDEX () ─> retL Method

Rebuilds all open indices for this DBserver. Equivalent to and invoked from the

REINDEX command or DBREINDEX() function.

retL = oRdd:REINDEX ()

Returns: <retL> signals success.

Multiuser: the database must be opened (or the class instantiated) in the EXCLUSIVE

mode.

Related: oRdd:CREATEINDEX(), REINDEX, DBREINDEX()

oRdd:RELATION ([expN1]) ─> retC Method

Retrieves the relation string, if any, set with SET RELATION command or the

oRdd:SETRELATION() method. Equivalent to and invoked from the DBRELATION()

function.

retC = oRdd:RELATION ([expN1])

Options: <expN1> is the ordinal number of the relation in the list of current relations

starting at one. Zero and NIL is equivalent to one, the first relation in the list.

Returns: <retC> is the string of the relation expression, if specified, or null string ""

otherwise.

Related: oRdd:SETRELATION(), oRdd:ISRELATION, DBRELATION(), SET

RELATION

oRdd:RELATIONOBJECT ([expN1]) ─> retO Method

Retrieves the DBserver object of the specified relation.

retC = oRdd:RELATIONOBJECT ([expN1])

Options: <expN1> is the ordinal number of the relation in the list of current relations

starting at one. Zero and NIL is equivalent to one, the first relation in the list.

Returns: <retO> is the object of the related DBserver, or NIL if no relation is set. The

object is returned also for temporarily disabled relations with the oRdd:RELATION

assign method.

Compatibility: not available in CA/VO.

Related: oRdd:SETRELATION(), SET RELATION, oRdd:RELATION()

OBJ 350

oRdd:REPLACE (exp1...) ─> retL Method

Replaces one or several fields with a new value. Equivalent to and invoked from the

REPLACE command.

retL = oRdd:REPLACE (exp1|expB1|expA1,
expC2|expN2|expA2, [expC3|expB3],
[expC4|expB4], [expN5|expL5])

Arguments: <exp1>|<expB1>|<expA1> is the expression or value, equivalent to the

WITH clause of the REPLACE command. When a code block is specified, the

result of evaluating it replaces the field. If the argument is an array, its elements

specify the expressions or code blocks to yield the replacement value. The type

of the <exp1> expression has to correspond to the field type <exp2>, otherwise

RTE occurs.

<expC2>|<expN2>|<expA2> is the name or ordinal position of the field to be

replaced with the <exp1> value. If the argument is an array, its elements specify

the field names or their ordinal positions. When both of the first two arguments

are arrays, the shorter array dimension is evaluated for any record of the given

scope. If the first argument is a single expression or code block and the second

argument an array, the <exp1> value replaces all fields of <expA2>.

Options: <expC3>|<expB3> is equivalent to the FOR clause of REPLACE. The

condition, given as a string or code block, is evaluated for each record of the

source scope.

<expC4>|<expB4> is equivalent to the WHILE scope. The condition, given as a string

or code block, is evaluated for each record from the current position until

<expB4> returns FALSE.

<expN5>|<expL5> is the range of records, providing the same functionality as the

ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope

values.

Scope: If none of the arguments 3 to 5 are specified, the global scope of the current

server is used, see chapter 6.1. If not set, the current record is REPLACEd.

Returns: <retL> signals the success, if TRUE, or failure (e.g. failed lock) otherwise.

Multiuser: if the database is opened (or the class instantiated) in SHAREd mode, at

least RLOCK() for deleting a single record, or FLOCK() for multiple record processing

is required, if oRdd:CONCURRENCY is set to 0.

Related: REPLACE, FIELDPUT(), oRdd:FIELDPUT(), <FieldName> := <exp>

oRdd:RLOCK ([expN1]) ─> retL Method

Locks the specified record to perform a write access or to protect this record against

write access from another user or process. Meaningful in SHAREd mode only.

Equivalent to and invoked from the RLOCK() function, or identical to invoking the

 OBJ 351

oRdd:RLOCK(oRdd:RECNO) method. The superset of this method is oRdd:

RLOCKVERIFY().

Options: <expN1> specifies the record number to be locked. The current record

pointer RECNO remains unchanged. When omitted, NIL or zero, the current

record is locked, and all previous locks are released.

Returns: <retL> signals success. On error, FALSE is returned, which reports that the

database is FLOCKed or the record RLOCKed by another user, application or

DBserver, or that <expN1> is out of range.

Multiuser: if the database is opened in SHAREd mode, and the automatic locking is

disabled (oRdd:CONCURRENCY is set to 0), RLOCK() is required prior to write

accessing a single record. If oRdd:CONCURRENCY is active, RLOCK() overrides the

automatic locking and the lock remains active until oRdd:UNLOCK() is executed. If the

database is opened in EXCLUSIVE mode (the default), no locking is required and

RLOCK() is ignored.

Related: RLOCK(), oRdd:LOCKCURRENTRECORD(), oRdd:RLOCKLIST,

oRdd:RLOCKVERIFY(), oRdd:UNLOCK(), oRdd:CONCURRENCY

oRdd:RLOCKLIST ─> expA Access

Returns an array of record numbers that are currently RLOCKed. If no records are

RLOCKed, an empty array is returned.

Related: RLOCK(), oRdd:RLOCK()

oRdd:RLOCKVERIFY () ─> retL Method

Determines if the current record is still unmodified since last accessed by the current

application and whether a record update is safe. If so, the record is RLOCKed. This

is a superset of the RLOCK() method.

retL = oRdd:RLOCKVERIFY ()

Returns: <retL> TRUE signals that the record contents is equal to that of the last field

access/assign/positioning of the current application, and the record is

successfully RLOCKed for subsequent field REPLACEment. FALSE signals,

that the record was changed by another user or process in the meantime, the

subsequent RLOCK and replacement may not be safe and therefore no RLOCK

is issued. The application should then determine the changed field to ensure a

correct transaction, see example in the RLOCKVERIFY() function. Since the

fields are not automatically updated after oRdd:RLOCKVERIFY(), you may store

the "old" data, issue oRdd:SKIP(0) and retrieve the new values. A FALSE value

may also signal, that oRdd:RLOCK() failed.

Multiuser: when the database is opened (or the class instantiated) in EXCLUSIVE

mode, the method always returns TRUE.

OBJ 352

Related: oRdd:RLOCK(), oRdd:LOCKCURRENTRECORD(), RLOCKVERIFY()

oRdd:SCOPE <─> expL|expN Access/Assign

Determines or sets the general server scope according to chapter 6.2. The scope

provides the same functionality as the ALL, REST and NEXT clause of commands and

affects several processing methods if these are called with no explicit scope. The

constants are available in "rddsys. fh" file.

Scope content Value Description

DBSCOPEALL .F. The scope is ALL records, or REST with WHILE.

DBSCOPEREST .T. The scope is the remaining records starting from the

current position.

any number > 0 The scope is NEXT nRecords.

specifying NIL The scope is ALL records, or REST with WHILE.

oRdd:SEEK (exp1...) ─> retL Method

Seeks through the current index/order for the first or last key matching the giving

expression, starting at the first logical record. Equivalent to and invoked from the

SEEK command or the DBSEEK() function.

retL = oRdd:SEEK (exp1, [expL2], [expL3])

Arguments: <exp1> is the expression to be matched with the index key, equivalent

to the <exp> of the SEEK command.

Options: <expL2> is equivalent to the SOFTSEEK clause of the SEEK command. If

set to TRUE (or FALSE), a soft seek is (not) performed, regardless to the SET

SOFTSEEK state. If NIL or not specified, the current state of SET SOFTSEEK is

considered.

<expL3> specifies, if the first or last occurrence of the key value is seek'ed for. If

TRUE, the database is positioned to the last matching key; or the first otherwise.

The TRUE option is supported by some RDDs only.

Returns: <retL> signals if the record was found, and is equivalent to the oRdd:FOUND

instance.

Example:

 SET EXACT OFF
 ? oAdr:SEEK ("MILLER") // find first Miller...
 ? oAdr:SEEK ("MILLER", , .T.) // find last Miller...

Related: SEEK, DBSEEK(), oRdd:SEEKEVAL(), oRdd:FOUND, oRdd:EOF

 OBJ 353

oRdd:SEEKEVAL (expB1...) ─> retL Method

Seeks through the current index/order for the first or next key matching the evaluated

code block expression, starting with the current record. Equivalent to and invoked

from the SEEK EVAL command.

retL = oRdd:SEEKEVAL (expB1, [expL2])

Arguments: <expB1> is the code block, which performs the comparison of the index.

The current index/order key value and the corresponding record number are

passed to the code block as parameters, the code block should return TRUE if

the match succeeds, or FALSE to continue the index search. The code block

body may not move the database pointer itself by means of GOTO or SKIP.

Options: <expL2> specifies for some RDD drivers, that the corresponding record

number should be read during the index search. If not given, specified TRUE or

NIL (the default), the DBserver will move the database pointer according to the

index key for any index skip. If specified FALSE in some RDD drivers, the

database pointer remains unchanged until the code block returns TRUE or the

end of the database was reached. This results in significant speed-up; but the

record status and its content are not available for the code block, also SET

DELETED and SET FILTER are ignored in this case. If <expL2> is not specified

(or TRUE) in the default DBSERVER and DBFIDX driver, the database record is

repositioned during the seek process only on request, i.e. if a field access (or

field status access) is specified within the code block body.

Returns: <retL> signals if the record was found, and is equivalent to the

oRdd:FOUND instance.

Example:

 ? oAdr:INDEXKEY() // "upper(NAME + FIRST)"
 bSeek := {|key, rec| ;
 "MILLER" $ key .and. "PETER" $ key}
 oAdr:GOTOP()
 while oAdr:SEEKEVAL (bSeek, .F.) // process index key only
 ? oAdr:NAME, oAdr:FIRST, CITY // for all ..Peter..Miller..
 oAdr:SKIP()
 enddo
 bSeek := {|key, rec| "MILLER" $ upper(key) .and. ;
 !deleted() .and. "MUNICH" $ upper(oAdr:CITY)}
 oAdr:GOTOP()
 ? oAdr:SEEKEVAL (bSeek) // .dbf access enabled

Compatibility: not available in CA/VO.

Related: SEEK EVAL, DBSEEK(), oRdd:SEEK(), oRdd:FOUND, oRdd:EOF

OBJ 354

oRdd:SETFILTER (expB1...) ─> retL Method

Sets a global DBserver filter condition (see also chapter 6.1), whereby the specified

or self-created code block is significant. Equivalent to and invoked from the SET

FILTER command or the DBSETFILTER() function.

retL = oRdd:SETFILTER ([expB1], [expC2])

retL = oRdd:SETFILTER (expC2)

Arguments: <expB1> is the code block that is evaluated for any database movement.

If <expC2> is omitted, <expB1> must be specified, but oRdd:FILTER and

DBFILTER() returns a null string.

<expC2> is a string, which is internally macro-compiled into the <expB1> code block,

if <expB1> is not specified. Otherwise, it contains only the information for

oRdd:FILTER and DBFILTER() reports.

Returns: <retL> signals success.

Related: SET FILTER, DBSETFILTER(), oRdd:CLEARFILTER()

oRdd:SETINDEX (expC1...) ─> retL Method

Opens an index file and select its order as the controlling order, if the order/ index list

is still empty. Equivalent to and invoked from the SET INDEX command or the

DBSETINDEX() function.

retL = oRdd:SETINDEX ([expC1], [expC2], [expL3])

Arguments: <expC1> is the name of the index file, optionally prefaced with the

directory. If no extension is specified, the default oRdd:INDEXEXT is used. If the

path is not specified, the current, SET PATH and SET DEFAULT directories are

searched. If <expC1> is NIL, null string, or not specified, the oRdd:CLEARINDEX()

method is invoked.

Options:<expC2> specifies the order tag name within the index file in multiple tag

indices, ignored otherwise.

<expL3> specifies whether the index should be opened EXCLUSIVE to that

application. If not given, the default is FALSE, which opens the index in shared

mode.

Returns: <retL> signals success.

Compatibility: only one argument is available in CA/VO.

Related: SET INDEX, DBSETINDEX(), oRdd:CLEARINDEX(), oRdd:SETORDER()

 OBJ 355

oRdd:SETORDER (expN1...) ─> retC Method

Selects an index/order from the list of open indices and makes it to the controlling

order. Moves the record pointer to the first logical record. Equivalent to and invoked

from the SET ORDER command or the DBSETORDER() function.

retC = oRdd:SETORDER ([expN1|expC1], [expC2])

Arguments: <expN1>|<expC1> is the ordinal number (1..15) specifying the position

in the list of open indices/ orders. Zero (0), NIL or null string "" disables the

controlling index order, but all indices remain open. <expC1> will search for the

order name in the list of open orders.

Options: <expC2> specifies the index file name, when an order name <expC1> is

given, which is not unique within the order list. Returns: <retC> is the last order

name or "".

Related: SET ORDER, DBSETORDER(), oRdd:SETINDEX()

oRdd:SETORDERCONDITION (expN1...) ─> retL Method

Sets conditions that are applied during the index and the order creation. If

oRdd:SETORDERCONDITION() has not been called, orders are not conditional. This

method is called from the INDEX ON FOR.. command and the ORDCONDSET()

function .

retL = oRdd:SETORDERCONDITION ([expC1], [expB2],
[expL3], [expB4], [expB5], [expN6],
[expN7], [expN8], [expN9], [expL10],
[expL11])

Options: <expC1> is a string equivalent to the FOR clause and stored in the index

header. Only this argument affects the later index update and reindex. If

conditional access is not required later, null string "" is equivalent to a NIL value.

If no arguments are specified at all, the condition is reset.

<expB2> is a code block that defines a FOR condition that each record within the

scope must meet in order to include this key into the index/ order file during the

order creation.

<expL3> specifies if all orders in the current or specified working area (if TRUE or

NIL) are affected, which is the default on INDEX ON.

<expB4> is a code block that defines a WHILE condition. The indexing is performed

as long as the code block returns TRUE and is aborted when the condition return

FALSE.

<expB5> is a code block that defines an EVAL clause. This code block is evaluated

for every record that is processed and often used for displaying of the indexing

progress.

OBJ 356

<expN6> is a numeric expression, which modifies the number of times <expB5> is

evaluated. It offers a performance enhancement by evaluating the condition for

every nth record instead of for every record ordered. Zero (0) is equivalent to

NIL, the default.

<expN7> is a numeric expression specifying the starting record number, Zero (0) is

equivalent to NIL, which specifies to start from the first record, if such is available.

<expN8> is a numeric expression, equivalent to the NEXT<n> clause, which specifies

the number of records to be processed.

<expN9> is a numeric expression, equivalent to the RECORD <n> clause, which

specifies the record to be processed.

<expL10> is a logical expression, FALSE is equivalent to the ALL clause (default),

whilst TRUE to the REST clause.

<expL11> is a logical expression, FALSE is equivalent to the ASCENDING sort order

(default), whilst TRUE to the DESCENDING clause.

Returns: <retL> signals success.

Related: ORDCONDSET()

oRdd:SETRELATION (expO1...) ─> retL Method

Sets a relation from this DBserver to a child server. Equivalent to and invoked from

the SET RELATION command or the DBSETRELATION() function.

retL = oRdd:SETRELATION (expO1, expB2|expC2|expA2,
[expC3])

retL = oRdd:SETRELATION ()

Arguments: <expO1> is the object specifying the child database. If omitted, the

oRdd:CLEARRELATION() method is invoked in order to clear all relations for the

current server.

<expB2>|<expC2>|<expA2> is a code block or string specifying the relation,

equivalent to the TO clause of SET RELATION. The <expC2> string (e.g. the field

name, corresponding to the child's index) is automatically macro compiled into a

code block. The elements of an array of strings <expA2> are concatenated with

a plus sign and the result is macro-compiled into a code block. As always, the

expression should match or be a partial index of the controlling index of the

child's work area.

Options: <expC3> specifies the relation string to be reported by ordd:RELATION() or

DBRELATION(), when <expB2> is used.

Returns: <retL> signals success.

 OBJ 357

Example:

 ? oAdr:INDEXKEY() // CustID
 ? oOrd:INDEXKEY() // AdrNum
 oAdr:SETRELATION(oOrd, {|| oAdr:CustID}, "CustID")
 oAdr:SEEK(12345)
 if oAdr:FOUND .and. oOrd:FOUND
 ? oAdr:CustID, oOrd:Name
 endif
 oOrd:SETORDER(2)
 oAdr:SETRELATION(oOrd, {"Name", "First", "City"})

Related: oRdd:ISRELATION, oRdd:CLERRELATION(), SET RELATION,

DBSETRELATION()

oRdd:SHARED ─> expL Access

Returns a logical value indicating the open mode. If the database is opened or the

object instantiated in SHARED mode, TRUE is returned. FALSE indicates an

exclusive open.

Related: DBSERVERNEW(), USE, DBUSEAREA(), oRdd:INFO(), ISDBEXCL()

oRdd:SKIP ([expN1]) ─> retN Method

Moves the record pointer forward or backward a specified number of records.

Equivalent to and invoked from the SKIP command or DBSKIP() function.

retN = oRdd:SKIP ([expN1])

Options: <expN1> is the number of records to move, relative to the current record. A

positive value means to move forward, and a negative value means to move

backward. If omitted, 1 is assumed.

Returns: <retN> is the number of records actually skipped.

Related: SKIP, DBSKIP(), oRdd:GOTO()

oRdd:SORT (expC1...) ─> retL Method

Copies records from the current database file (source) in sorted order to another

database file (target). Equivalent to the SORT command.

retL = oRdd:SORT (expC1|expO1, [expA2],
[expC3|expB3], [expC4|expB4],
[expN5|expL5])

Arguments: <expC1>|<expO1> is the name or DBserver object of the target

database. If no extension is specified with <expC1>, it is assumed to be .dbf, or

the standard extension according to the RDD driver. If <expC1> is specified, the

OBJ 358

target database is opened exclusively. If <expO1> is given, the RDD server

object is used and the records are appended.

Options: <expA2> is an array of character values, specifying the field names used

as a sorting order. Any field may include the sorting order (/A, /D, /C, see SORT

command). If <expA2> is not specified, the records are transferred in the

physical or logical order of the source server.

<expC3>|<expB3> is equivalent to the FOR scope. The condition, given as a string

or code block, is evaluated for each record of the scope.

<expC4>|<expB4> is equivalent to the WHILE scope. The condition, given as a

string or code block, is evaluated for each record from the current position in the

source database until <expB4> returns FALSE.

<expN5>|<expL5> is the range of records, providing the same functionality as the

ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope

values.

Scope: If none of the arguments 3 to 5 are specified, the global scope of the current

server is used, see chapter 6.1. If not set, the default is ALL records.

Returns: <retL> signals success, if TRUE, or failure (e.g. the open mode) otherwise.

Example:

 ok := oAdr:SORT ("newadr", {"Name /C","First","left(ZIP,3) /D"},;
 {|| "MILLER" $ upper(Name)})
 // which is equivalent to

 oAdr:SETORDERCONDITION ('"MILLER" $ upper(Name)')
 oAdr:CREATEINDEX ("tmp", "upper(Name)+First+descend(left(zip,3)))
 oAdr:COPYDB ("newadr")

Related: SORT, INDEX, COPY TO

oRdd:SUM (expC1...) ─> retA Method

Calculates the sum of a series of numeric expressions. Similar to the SUM command.

retA = oRdd:SUM (expC1|expL1|expB1|expA1,
[expC2|expB2], [expC3|expB3],
[expN4|expL4])

Arguments: <expC1>|<expL1>|<expB1>|<expA1> is a single expression (e.g. field

name), a code block or an array of expressions or code blocks to be summarized.

The expression must evaluate to numeric or logical to be summarized, whereby

TRUE adds one to the result.

Options: <expC2>|<expB2> is equivalent to the FOR scope. The condition, given as

a string or code block, is evaluated for each record of the scope.

 OBJ 359

<expC3>|<expB3> is equivalent to the WHILE scope. The condition, given as a string

or code block, is evaluated for each record from the current position in the source

database until <expB3> returns FALSE.

<expN4>|<expL4> is the range of records, providing the same functionality as the

ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: If none of the arguments 2 to 4 are specified, the global scope of the current

server is used, see chapter 6.1. If not set, the default is ALL records.

Returns: <retA> is an array that contains the sums for each expression or field

specified. If a single expression is specified, the array dimension is one,

otherwise the dimension of <expA1> is returned.

Example:

 aResult := oAdr:SUM ({"Turnover", {||dept >= 4711}, "Commis"} ,;
 {|| "MILLER" $ upper(Name)} ,, DBSCOPEREST)

Related: SUM, AVERAGE, TOTAL

oRdd:TOTAL (expC1...) ─> retL Method

Summarizes records by key value, producing grouped summarizations, and writes

the aggregate values to another (target) database. Similar to the TOTAL command.

retL = oRdd:TOTAL (expC1|expO1, expC2|expB2,
[expA3], [expC4| expB4], [expC5|expB5],
[expN6|expL6])

Arguments: <expC1> is the name of the target database. If no extension is specified,

it is assumed to be .dbf, or the standard extension according to the RDD driver.

The target database is opened exclusively.

<expC2>|<expB2> is the key field that is the basis for the summarization groups,

that produce a new record in the target database. Equivalent to the ON clause

of the TOTAL command. The database should be indexed or sorted on that key.

 Options: <expA3> is an array of names of numeric fields to total, equivalent to the
FIELDS clause of TOTAL. If the argument is not specified, the target record
contains the value of the first record matching the second argument.

<expC4>|<expB4> is equivalent to the FOR scope. The condition, given as a string

or code block, is evaluated for each record of the scope.

<expC5>|<expB5> is equivalent to the WHILE scope. The condition, given as a string

or code block, is evaluated for each record from the current position in the source

database until <expB5> returns FALSE.

<expN6>|<expL6> is the range of records, providing the same functionality as the

ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

OBJ 360

Scope: If none of the arguments 4 to 6 are specified, the global scope of the current

server is used, see chapter 6.1. If not set, the default is ALL records.

Returns: <retL> signals success.

Example:

 ? oAdr:INDEXKEY() // str(Departm,5) + city
 ok := oAdr:TOTAL ("depsum", "Departm", {"Turnover", "Commis"})
 oDep := DBSERVER {"depsum"}
 oDep:EVAL ({|| qout(recno(), Turnover, Commis)})

Related: TOTAL, SUM, AVERAGE

oRdd:UNLOCK ([expN1]) ─> retL Method

Releases a specified lock or all locks. Equivalent to and invoked from the UNLOCK

command.

retL = oRdd:UNLOCK ([expN1])

Options: <expN1> is the number of the desired record. If 0 or omitted, all locks for

this server are released, record locks as well as file locks.

Returns: <retL> signals success.

Multiuser: if the database is opened exclusive, all locks and un-locks are ignored.

Related: UNLOCK, oRdd:RLOCK(), oRdd:FLOCK()

oRdd:UPDATE (expC1...) ─> retL Method

Updates this server (target) with data from another database server (source).

Equivalent to the UPDATE command.

retL = oRdd:UPDATE (expC1|expO1, expC2|expB2,
[expL3], expB4)

Arguments: <expC1>|<expO1> is the name or DBserver object of the source

database, equivalent to the FROM clause of UPDATE. If no extension is specified,

it is assumed to be .dbf, or the standard extension according to the RDD driver.

If <expC1> is specified, the source database is used shared, in read-only mode.

If <expO1> is given, the RDD server object is used.

<expC2>|<expB2> is the key field that defines how records are matched between

the servers. Equivalent to the ON clause of UPDATE.

<expB4> is a code block that manages the update and replace operations.

Options: <expL3> is equivalent to the RANDOM clause. If specified TRUE, it indicates

that the records in the other database are allowed to be unsorted. Otherwise, the

source database must be sorted or indexed on the <exp2> key.

 OBJ 361

Returns: <retL> signals success, if TRUE, or failure otherwise.

Multiuser: if the (target) database is opened (or the class instantiated) in SHAREd

mode, at least FLOCK() is required, if oRdd:CONCURRENCY is set to 0.

Example:

 oFrm:INDEXKEY() // Departm
 oAdr:FLOCK()
 oAdr:UPDATE (oFrm, {|| Departm}, , ;
 {|| oAdr:TurnOver += oFrm:cost, oAdr:Count++ })

Related: UPDATE

oRdd:USED ─> expL Access

Returns a logical value indicating whether the server is open. Even if the USE

command or instantiating the object fail to open the database, a DBserver object is

created. Also, if the database is closed in the meantime, the object remains visible

during the variable visibility (life-time) scope. Therefore, if the usability status is

unknown, check the oRdd:USED status for TRUE before any DBserver manipulation.

This instance is equivalent to and invoked from the USED() function.

Related: DBSERVERNEW(), USE, DBUSEAREA(), USED(), DBOBJECT()

oRdd:WHILEBLOCK <─> expB|NIL Access/Assign

The WHILE block is a component of the general server scope, described in chapter

1. It affects several bulk processing methods if they are called with no explicit scope.

The WHILE block can be specified as a code block or a string. An access to this

instance always returns a code block or NIL if not set. To reset the global WHILE

block, assign NIL to it or execute oRdd:CLEARSCOPE() for a global reset.

Related: oRdd:FORBLOCK, oRdd:SCOPE, oRdd:CLEARSCOPE()

oRdd:ZAP () ─> retL Method

Permanently removes all records from the DBserver database (and memo file),

leaving the database empty. Equivalent to the ZAP command.

retL = oRdd:ZAP ()

Returns: <retL> signals success.

Multiuser: the database must be opened (or the class instantiated) in EXCLUSIVE

mode.

OBJ 362

Index

@

@..GET
- class OBJ-101
- object OBJ-101

A

Achoice()
- class of OBJ-120

Application
- attributes OBJ-20
- close of OBJ-26
- command-line parameter OBJ-12
- font .. OBJ-12

-- output OBJ-14
-- widgets OBJ-14

- hidding OBJ-24
- MDI

-- mode OBJ-24
- Menu OBJ-168
- notification OBJ-26
- print status of........................... OBJ-31
- scroll bar OBJ-23
- style ... OBJ-31
- title of OBJ-20
- type of OBJ-12
- window

-- font OBJ-14
-- move OBJ-25
-- re-display OBJ-23
-- resize OBJ-28
-- size

--- current OBJ-21
--- default OBJ-22

C

CheckBox
- box around OBJ-49
- caption

-- column OBJ-47

-- row OBJ-47
-- text OBJ-48

- checked OBJ-48
- clear .. OBJ-50
- color .. OBJ-50
- column OBJ-49
- display OBJ-51
- execute OBJ-56
- focus .. OBJ-52
- handler

-- focus OBJ-51
-- state OBJ-55

- Handler OBJ-51
- HandlerSelect OBJ-52
- height OBJ-52
- message OBJ-54
- modified OBJ-54
- mouse click OBJ-52
- row .. OBJ-54
- select OBJ-55
- style ... OBJ-56
- tooltip OBJ-57
- width .. OBJ-57

Class
- Application OBJ-10

-- basic OBJ-10
-- creator OBJ-11
-- window OBJ-16

- CheckBox OBJ-43, see also CheckBox
- Color .. OBJ-34
- ColorPair OBJ-35
- ComboBox OBJ-61, 120
- DataServer OBJ-296
- DbfIdx OBJ-296
- DbServer OBJ-296
- Dimension OBJ-36
- Error .. OBJ-62
- ErrorBox OBJ-76
- Font ... OBJ-89
- Get .. OBJ-101
- InfoBox OBJ-76
- instance OBJ-8
- ListBox OBJ-120
- MenuItem OBJ-151

 OBJ 363

- MessageBox OBJ-76
- method OBJ-9
- Mouse OBJ-37
- object of OBJ-4
- overview OBJ-4
- Point .. OBJ-38
- PopUp OBJ-157
- Printer OBJ-178
- PushButton OBJ-195
- RadioButton OBJ-210
- RadioGroup OBJ-223
- Rectangle OBJ-40
- Size ... OBJ-41
- syntax .. OBJ-9
- TbColumn OBJ-287
- Tbrowse OBJ-245
- TextBox OBJ-76
- TopBar OBJ-168
- WarningBox OBJ-76

Column
- conversion

-- from pixel OBJ-15
-- to pixel OBJ-15

- width in pixel OBJ-12
ComboBox OBJ-see CheckBox

D

Database
- class of OBJ-296
- driver OBJ-323
- info about OBJ-333
- object of OBJ-296
- status OBJ-333

Desktop
- DPI .. OBJ-13
- height OBJ-12
- size .. OBJ-13
- size, available OBJ-13
- width .. OBJ-13

E

Error block OBJ-63
Error handling OBJ-63
Event

- handler
-- call-back OBJ-26

-- close application OBJ-26
-- move window...................... OBJ-27
-- resize window OBJ-27

- process OBJ-27
Event2str() OBJ-26

F

Font
- class .. OBJ-89

I

Index
- info about OBJ-340
- status OBJ-340

InfoBox()
- class of OBJ-76

M

MDI
- mode OBJ-24

MessageBox()
- class of OBJ-76

O

Object
- overview OBJ-4

P

Printer
- class OBJ-178

R

rddsys.fh include file OBJ-298
Row

- conversion
-- from pixel OBJ-15
-- to pixel OBJ-15

- width in pixel OBJ-14

OBJ 364

S

Scroll bar
- application OBJ-23

Source
- o_printer.prg OBJ-178

T

TbColumn
- class OBJ-287

Tbrowse
- class OBJ-245

TextBox()
- class of OBJ-76

 OBJ 365

Notes

multisoft Datentechnik
Schönaustr. 7
D-84036 Landshut

http://www.fship.com
sales@multisoft.de
support@flagship.de

	fsman_OBJ_0.pdf
	Cross-Compatible to Unix, Linux and MS-Windows
	Manual release: 8.1
	Copyright
	Trademarks

	fsman_OBJ.pdf
	OBJ: Objects and Classes
	1. Overview
	1.1 Objects
	1.2 Classes
	1.3 FlagShip Classes Sorted By Groups
	1.4 FlagShip extensions
	1.5 Instance Variables
	1.6 Methods
	1.7 Notation

	Application Class
	Application Basic Class
	Application Basic Class Index
	Application Basic Class Properties

	Application Window Class
	Application Window Class Index
	Application Window Class Properties

	Basic Classes
	Color Class
	ColorPair Class
	Dimension Class
	Mouse Class
	Point Class
	Rectangle Class
	Size Class
	CheckBox Class
	CheckBox Class Index

	CheckBox Class Instantiation
	CheckBox Class Properties
	ComboBox Class
	ComboBox Class Index

	ComboBox Class Instantiation
	ComboBox Class Properties

	Error Class
	1. Error handling strategy

	2. Error Blocks and Functions
	ErrorNew ()
	Error Class Properties
	ErrorBox Class
	ErrorBox Class Index
	ErrorBox Class Instantiation
	ErrorBox Class Properties

	InfoBox Class
	InfoBox Class Index
	InfoBox Class Instantiation
	InfoBox Class Properties

	MessageBox Class
	MessageBox Class Index

	MessageBox Class Instantiation
	MessageBox Class Properties
	TextBox Class
	TextBox Class Index
	TextBox Class Instantiation
	TextBox Class Properties

	WarningBox Class
	WarningBox Class Index
	WarningBox Class Instantiation
	WarningBox Class Properties

	Font Class
	Font Class Index
	Font Class Instantiation
	Font Class Properties
	GET Class
	GETNEW()
	Get Class Index
	GET Instance Variables
	GET Init & Status Methods
	GET Editing Methods
	ListBox Class
	ListBox Class Index

	ListBox Class Instantiation
	ListBox Class Properties
	MenuItem Class
	MenuItem Class Index

	MenuItem Class Instantiation
	MenuItem Class Properties
	PopUp Class
	PopUp Class Index

	PopUp Class Instantiation
	PopUp Class Properties
	TopBar Class
	TopBar Class Index

	TopBar Class Instantiation
	TopBar Class Properties
	Printer Class
	Printer Class Index

	Printer Class Instantiation
	Printer Class Properties

	Push Button Class
	PushButton Class Index

	PushButton Class Instantiation
	PushButton Class Properties
	RadioButton Class
	RadioButton Class Index

	RadioButton Class Instantiation
	RadioButton Class Properties
	RadioGroup Class
	RadioGroup Class Index

	RadioGroup Class Instantiation
	RadioGroup Class Properties
	TBROWSE Class
	1. Creating an Object
	2. Specifying the Columns
	3. Stabilizing the Display

	4. Data Movement
	5. Handling a User Request
	6. Editing Data
	Tbrowse Class Instantiation
	TbrowseNew ()

	TbrowseArr ()
	TbrowseDB ()
	Tbrowse Class Index
	Tbrowse Class Properties
	TbColumn Class
	TbColumnNew ()
	TbColumn Class Index
	TbColumn Class Properties
	DataServer and DBserver Class
	1. Scope and Filters
	2. Summary of Properties
	DBSERVERNEW() and DBFIDXNEW()
	DataServer and DBserver Properties
	Index
	Notes

	fsman_cover_back_21x24.pdf

