

The whole FlagShip 8 manual consist of following sections:

Section Content

GEN
General information: License agreement & warranty, installation
and de-installation, registration and support

LNG
FlagShip language: Specification, database, files, language
elements, multiuser, multitasking, FlagShip extensions and
differences

FSC
Compiler & Tools: Compiling, linking, libraries, make, run-time
requirements, debugging, tools and utilities

CMD
Commands and statements: Alphabetical reference of FlagShip
commands, declarators and statements

FUN Standard functions: Alphabetical reference of FlagShip functions

OBJ
Objects and classes: Standard classes for Get, Tbrowse, Error,
Application, GUI, as well as other standard classes

RDD Replaceable Database Drivers

EXT
C-API: FlagShip connection to the C language, Extend C
System, Inline C programs, Open C API, Modifying the
intermediate C code

FS2 Alphabetical reference of FS2 Toolbox functions

QRF
Quick reference: Overview of commands, functions and
environment

PRE Preprocessor, includes, directives

SYS
System info, porting: System differences to DOS, porting hints,
data transfer, terminals and mapping, distributable files

REL
Release notes: Operating system dependent information,
predefined terminals

APP
Appendix: Inkey values, control keys, ASCII-ISO table, error
codes, dBase and FoxPro notes, forms

IDX Index of all sections

fsman

The on-line manual “fsman” contains all above sections, search
function, and additionally last changes and extensions

multisoft Datentechnik, Germany

 Copyright (c) 1992..2017
 All rights reserved

Object Oriented Database Development System,

Cross-Compatible to Unix, Linux and MS-Windows

Section SYS

Manual release: 8.1

For the current program release see your Activation Card,
or check on-line by issuing FlagShip -version

Note: the on-line manual is updated more frequently.

Copyright

Copyright © 1992..2017 by multisoft Datentechnik, D-84036 Landshut, Germany. All rights

reserved worldwide. Manual authors: Jan V. Balek, Ibrahim Tannir, Sven Koester

No part of this publication may be copied or distributed, transmitted, transcripted, stored in a

retrieval system, or translated into any human or computer language, in any form or by any

means, electronic, mechanical, magnetic, manual, or otherwise; or disclosed to third parties

without the express written permission of multisoft Datentechnik. Please see also "License

Agreement", section GEN.2

Made in Germany. Printed in Germany.

Trademarks

FlagShip™ is trademark of multisoft Datentechnik. Other trademarks: dBASE is trademark

of Borland/Ashton-Tate, Clipper of CA/Nantucket, FoxBase of Microsoft, Unix of AT&T/USL/

SCO, AIX of IBM, MS-DOS and MS-Windows of Microsoft. Other products named herein may

be trademarks of their respective manufacturers.

Headquarter Address

 multisoft Datentechnik E-mail: support@flagship.de
 Schönaustr. 7 support@multisoft.de
 84036 Landshut sales@multisoft.de
 Germany

Phone: (+49) 0871-3300237 Web: http://www.fship.com

mailto:support@flagship.de
mailto:support@multisoft.de
mailto:sales@multisoft.de
http://www.fship.com/

 SYS 1

SYS: System and Porting Hints

SYS: System and Porting Hints .. 1
1. Porting Hints ... 2

1.1 System differences Unix and DOS .. 2
Code sharing ... 2
Mathematical coprocessor .. 3
Memory swapping and paging .. 3
Data access ... 3
Data sharing management .. 3
File system, drive letters .. 4
Networking .. 4
Permission/access rights... 6
File and path names .. 7
Source compatibility .. 7
Data compatibility .. 8

1.2 Customizing your Application ... 9
1.2.1 Re-distributable FlagShip Files .. 9
1.2.2 Customer Settings .. 10
1.3 Porting to other systems ... 11

2. Tuning the Input/Output .. 13
2.1 GUI and Terminal i/o background ... 13
2.1.1 GUI i/o mode .. 14
2.1.2 Terminal i/o mode ... 16
2.1.3 Basic i/o mode .. 18

2.2 The terminfo file .. 19
2.3 FlagShip terminal description (FStinfo.src) ... 21
2.4 Output mapping (FSchrmap.def) ... 22
2.5 Input mapping (FSkeymap.def) ... 23

2.6 User specific sorting (FSsortab.xxx) ... 25
2.7 Disabling the Curses initialization ... 27

2.8 Disabling Spooler File Creation ... 28
2.9 Using FlagShip for a Web Server .. 28

3. Tuning the System .. 31
Kernel parameters ... 32
Open files .. 32
Lockings .. 33
File size ... 33
Buffer caching & update .. 33
Processes .. 34
Shared memory ... 34
Memory swapping and paging .. 34
Shared applications ... 35

Index ... 38

SYS 2

1. Porting Hints

FlagShip is designed as a stand-alone development system in the Unix/Linux or MS-Windows

environment in order to create highly efficient database applications with little effort on the part

of the programmer.

Because of its highest cross compatibility on the market, it is also ideally suited for porting

existing applications written in Clipper, FoxBase, FoxPro, dBASE or other xBASE languages

to nearly any Unix operating system.

Although the Unix system is quite different from MS-DOS, we at multisoft make every effort to

make your program porting as easy as possible. Here are some hints on programming

techniques, which can enable you to write your sources fully portable, almost without any

modifications.

1.1 System differences Unix and DOS

Unix is designed as a general purpose, multiuser and multitasking operating system running

on nearly any computer or processor, from a low- cost computer to mainframe. In contrast,

MS-DOS is a single-user, single- tasking operating system running on Intel based processors

only.

On Unix, you do not need additional hardware and software (such as a network) to allow

several users to access the same data. By using virtual terminals or background processing,

different tasks (applications) may run simultaneously on the same terminal. Additional

terminals may be connected via serial cabling, modem, Ethernet and so on. A normal PC,

running a terminal emulator program, is also often used as a terminal for Unix.

The main difference between Unix and a networked PC is where the application is executed

and how it handles the data requested. On Unix, the application always runs on the main Unix

computer (server). Distributed processing, by sharing the data and applications is also

possible using the TCP/IP protocol, NFS or other remote networks.

Code sharing

When the same application is used by different users, the executable code is usually loaded

only once into the RAM memory and shared with all other users. Of course, any user (process)

receives its own, protected data storage. Code sharing can usually be controlled by means of

linker "ld" options (-i -A -F on SCO, see your "man" pages) and is set by default when compiling

by FlagShip. Not available in DOS, partially available in Windows and supported as such

automatically in FlagShip for MS-Windows.

 SYS 3

Mathematical coprocessor

If a mathematical coprocessor is detected (standard nowadays), FlagShip uses it for all floating

point operations (i.e. with all numeric variables) and during internal processing. This speeds

up the application execution significantly, compared to the same computer without a

coprocessor.

Memory swapping and paging

Most current Unix systems (system V [five] release 3 and up) allow running a single application

or the sum of all user applications to be larger than the available RAM storage – at least four

Gigabytes or more. If the RAM storage is insufficient, the Unix kernel swaps a part of the

currently inactive RAM storage to disk and loads another program part into RAM. Some of the

swapping parameters can be changed by the user (system manager, super-user) by tuning

the kernel parameters. See details in chapter SYS.3.

MS-Windows 32/64bit supports paging and swapping by a similar way as in Unix, using a

swapping file.

On DOS, the application can use only up to 640 KB. The internal memory swapping is very

limited and must be handled by the application itself, e.g. using overlays, swapping handles,

extended or expanded RAM memory handles and so on.

Data access

On DOS, the application always runs exclusively on one computer. When data sharing with

other users is required, additional network hardware and software must be used. The network

simulates additional disk storage to the local PC. When accessing the (remote) disk, all the

data is shuffled through the network to the local PC until the required record is found.

In Unix, the application runs on the same hardware where the data is located. This means that

additional data transfer is not required and the throughput is much higher as compared to a

network. (Similar to running an application directly on the network server). The Unix system

has additional internal data buffering (caching), which is also tunable. See chapter SYS.3.

In MS-Windows, the application can run either on the workstation, or on the server, see also

Networking below.

Data sharing management

When data sharing is required, both Unix and DOS network support similar mechanisms. In

order for several users to share the same file as read-only (like reading a text file), there are

no special requirements.

SYS 4

When a read-write access is involved (as database or indices are usually used), several

conditions must be met to avoid mutual, uncontrolled overwriting of the same data. Firstly, the

file must be opened in shareable mode. Prior to any write attempt, the data (record or file)

must be "locked". This marks a part of the file as "in use by my application", if not already in

use by another task. Moreover, the executed program must ensure that a write access without

previous locking is rejected. All these mechanisms are set automatically by FlagShip simply

by using the SHARED clause of the USE command (or SET EXCLUSIVE OFF) and the RLOCK(),

FLOCK() ... UNLOCK locking mechanisms for databases. If SET AUTOLOCK is ON (the default),

FlagShip automatically locks the record or file for the duration of replacement and unlocks it

thereafter. Also, low-level locking is available using the FLOCKF() function.

The number of shareable files (per user and system-wide), and the number of locks available

is controlled by the Unix kernel and its tunable parameters (see SYS.3). The currently set locks

may be examined using e.g. the Unix command "sar -r 1 1" or in Linux by “cat /proc/locks”.

On DOS, the number of shareable files is set in different parts: in the CONFIG.SYS file with

FILES=, by loading the network software, using the SHARE command and by the environment

variable CLIPPER=Fxxx. The number of locks is not configurable. In 32 and 64bit Windows

and Unix/Linux, there is no need such a setting for executables created by FlagShip.

File system, drive letters

FlagShip for MS-Windows automatically supports DOS drive selectors. There is no Unix

equivalent for the MS-DOS drive selector, e.g. A: or D:. Instead, Unix utilizes the concept of

physically mounting separate disks into one file system using a tree-like structure of

directories. FlagShip for Unix/Linux automatically supports DOS drive selectors specified in the

source, when the corresponding environment variable is set (e.g. "export D_FSDRIVE=

/home/data” to automatically substitute /home/data as drive D:). See section FSC.3.3 for

details.

Networking

The data (databases, indices) may be located on a local disk drive, or on a remote file system

(network) mounted via NFS, SAMBA, Windows server, Novell, WLAN/Intranet/Internet etc. You

will achieve best performance when the application access local data; network access may

slow-down the performance (sometimes significantly, in dependence on the used topology

and LAN speed).

FlagShip supports different network topology:

 SYS 5

 ┌──────────────┐ ┌──────────────┐
 │ terminal/GUI │ │ terminal/GUI │ Workstations/Users on
 └──────┬───────┘ └──────┬───────┘ the same or different
 ┌──────┴───────┐ ┌──────┴───────┐ operating system(s)
 │ application │ │ application │
 └──────╥───────┘ └──────╥───────┘
 ║ ║ Network (LAN, WLAN)
 ╚══════════╦═════════╝ supporting byte locking
 ╔════════╩════════╗
 ║ data (dbf, idx) ║ Databases and indices
 ╚═════════════════╝ on server

 ┌──────────────┐ ┌──────────────┐ Workstations/Clients
 │ terminal/GUI │ │ terminal/GUI │ remotely connected to
 └──────╥───────┘ └──────╥───────┘ server (telnet, ssh,
 ║ ║ emulator, X/server etc.)
 ╚══════════╦═════════╝
 ║ Any network (LAN, WLAN)
 ┌───────╨──────┐
 │ application │ Application on server
 └───────┬──────┘ (aka client/server)
 ╔════════╧════════╗
 ║ data (dbf, idx) ║ Databases and indices
 ╚═════════════════╝ on server

or in any combination of above, e.g.

 ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
 │ terminal/GUI │ │ terminal/GUI │ │ terminal/GUI │ │ terminal/GUI │
 └──────┬───────┘ └──────┬───────┘ └──────╥───────┘ └──────╥───────┘
 ┌──────┴───────┐ ┌──────┴───────┐ ║ WLAN ║
 │ application │ │ application │ ╚════════╦═══════╝
 └──────╥───────┘ └──────╥───────┘ ┌───────╨──────┐ Server1
 ║ ║ │ application ├───┐
 ║ ║ └───────╥──────┘ │
 ║ LAN ║ LAN ║ ┌───────┴──────┐
 ╚════════════════╩═════════╦═══════════════╝ │ terminal/GUI │
 ╔════════╩════════╗ └──────────────┘
 ║ data (dbf, idx) ║Server2
 ╚═════════════════╝

If the application and data are at different physical locations, the network protocol (or at least

the network part connecting application to data) must support byte locking. This is required to

handle file FLOCK() and record RLOCK() locking in FlagShip. Here some common settings

for configurable networks:

NFS: (Unix/Linux/Windows client, settings usually in /etc/fstab file) server:/path /mountpoint

nfs ...rw,exec,lock,sync,....

 example:
 192.168.1.1:/data /server/data nfs user,rw,exec,auto,lock,nfsvers=3,
 sync,hard,intr,rsize=8192,wsize=8192 0 0

Note: on instable NFS WLAN network, you may need to invoke SET NFS ON in your

application to avoid data corruption, see section CMD for details.

SYS 6

SAMBA: (server for Windows, settings usually in /etc/samba/smb.conf file)

 [share-name]
 locking = yes # just to be sure, default=yes
 strict locking = no # yes would always lock the whole file
 oplocks = no # yes (faster): only on access by the same OS
 blocking locks = no # yes: depending on the used operating system
 # a F/RLOCK() failure will not return .F.
 # but may wait until record/file is unlocked
 example:
 [data]
 path = /usr/data/common
 read only = no
 create mask = 0666
 directory mask = 0775
 locking = yes
 strict locking = no
 oplocks = no
 blocking locks = no

Windows Server/Workstations: Disable oplocks (opportunistic locking) in registry when

accessing data concurrently from different operating systems (e.g. Unix + Windows),

see details in MS KnowledgeBase Q129202 on

http://support.microsoft.com/default.aspx?scid=kb;en-us;129202

Novell Server: See Windows server above for oplocks and/or Novell TID10085899 on

http://support.novell.com/cgi-bin/search/searchtid.cgi?/10085899.htm

Permission/access rights

When you need to have read and write access to databases and indices, the user needs to

have at least

• read+write+execute (rwx) access rights to the used directory, and

• read+write (rw) access to databases (.dbf, .dbt, .dbv) and indices (.idx)

For read-only access to databases and indices, the user must have at least

• read+execute (r-x) access rights to the used directory, and

• read (r) access to databases (.dbf, .dbt, .dbv) and indices (.idx), and

• the database must be open in READONLY mode.

See additional details in LNG.3.3. The same apply for MS-Windows (file and/or directory

property in Explorer) except there is no explicit execute permission available. Neither the

directory nor files must have hidden (H) or system (S) attributes.

 SYS 7

File and path names

On DOS, the file name consists of the name (1..8 characters), a dot "." and an optional

extension (0..3 characters). Directory (path) names are separated by a backslash "\". File and

path names are not case-sensitive.

All versions of Unix support at least 14 characters (usually 250 or more) in the filename, same

as Windows 32/64bit versions. In Unix/Linux, lower and upper characters are distinguished,

and dot (.) is treated as any other character, i.e. it has no predefined meaning and can be

repeated in the filename as many times as selected. In Unix the filenames are usually given

in lower case characters, directory and paths are separated by a slash "/".

FlagShip for Unix/Linux automatically translates the given backslash "\" character to "/" during

a file access, FlagShip for Windows translates "/" to "\", so you can use common programming

and sources, independent on the target operating system. When the lower/uppercase transla-

tion is specified using FS_SET("lower"|"upper",.T.) or #include "fspreset.fh" invoked, all speci-

fied file names (and extensions) are automatically converted to lower/uppercase during file

access. Additionally, specifying FS_SET("pathlower"|"pathupper", .T.) will then automatically

translate all given path or directory names to lower/uppercase.

On Unix, an embedded space or special characters are valid within a file or directory name (to

check this use e.g. “ls -lb *"). To avoid confusion, FlagShip removes all leading and trailing

blanks from the specified file name. Using FS_SET("shortname") will also remove embedded

spaces or special characters from the file and path names. If you need to access file names

or paths including spaces, enclose it in double quotas "...".

Source compatibility

FlagShip ensures the greatest possible source compatibility to xBASE systems on DOS, i.e.

Clipper (Summer'87, 5.x, 5.2). Also, most commands and functions of dBASE (III, III+ and IV)

and Fox (FoxBase, FoxPro) are supported.

The main source differences are described in LNG.1.3 and LNG.9. In the reference sections

(CMD, FUN, EXT), the significant differences between FlagShip and other systems are also

specified.

FlagShip for Unix/Linux and for MS-Windows is fully source and data compatible to each other,

assuming the same FS release is used.

SYS 8

Data compatibility

All binary files from other xBASE systems on DOS (.dbf, .dbt, .fpt, .mem, .txt, .rpr, .lbl) are 1:1

compatible. Only the indices (.idx in FlagShip) must be rebuild anew for the first time. FlagShip

databases and indices are cross-compatible for different platforms (Unix, Linux, MS-

Windows). Using the replaceable database drivers (RDD) package also allows the use of

Clipper and Fox indices and/or access to other SQL database systems such as mySQL,

Postgres, Informix, Oracle etc.

Refer also to section LNG.9 and http://www.fship.com/rdds.html for more details.

 SYS 9

1.2 Customizing your Application

The usual process to get an independent application running on Unix/Linux or Windows is:

1. Create the program sources on Unix (or MS-Windows) using a usual text or program

editor -or- transfer your available sources (and data) from DOS as described in chapter

FSC.7.

2. Compile the sources and test the application as described in section FSC.

3. The final executable may be named e.g. "start" or "address" etc. to distinguish it from all

other files (MS-Windows executables have always .exe extensions). In Linux, you may

use any extension of your choice, e.g. ".out" or ".exu" for the executable. Note the lower

and uppercase sensitivity on Unix. You may also compile statically by using the -stat

compiler switch and with debugger using the -d switch.

4. If the application is to be used by other users on the same system, copy the final

executable from your working directory (or make symb. link) to a shared binaries directory

(e.g. "sudo cp myexe /usr/bin/." or "sudo ln -s myexe /urs/local/bin/.") and

ensure that you allow the execution for the required user, group or for all users (e.g.

setting the -rwxr-xr-x attributes ("chmod 755 myexe") for general purpose use).

 In MS-Windows, you may copy the executable to any directory of your choice, best into

one included in the %PATH% environment variable.

5. Extract the re-distributable FlagShip files into your distribution directory by using the

distribute.sh script or distribute.bat batch file, see next section 1.2.1.

 For distributing dynamically compiled Linux applications, you will need at least to copy the

shared library from <FlagShip_dir>/lib/libFlagShip_8*.so to any directory on the target

system, preferably to /usr/lib - otherwise add the lib path to the environment variable

LD_LIBRARY_PATH, e.g. “export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/data:

/usr/local/additional/libs”. For statically linked executable by the -stat switch, nothing else

than the executable is required.

1.2.1 Re-distributable FlagShip Files

From the FlagShip Package, you may distribute with your application:

1. <FlagShip_dir>/terminfo directory & subdirectories with the terminfo entries and

translation/mapping tables for GUI and Terminal i/o

2. <FlagShip_dir>/xfonts directory for GUI and Terminal i/o mode

3. <FlagShip_dir>/bin/FSwhichterm script for Unix/Linux

4. <FlagShip_dir>/bin/FSXTerm.xrdb* scripts for Unix/Linux

5. <FlagShip_dir>/bin/newfs* scripts for Unix/Linux

6. <FlagShip_dir>/bin/*tic194 optional for Unix/Linux

SYS 10

7. Only when your application is linked dynamically (not required when compiled statically

by using the -stat switch): <FlagShip_dir>/lib/libFlagShip_8*.so for Unix/Linux, or

<FlagShip_dir>\lib\FlagShip_8*.dll for MS-Windows

8. %SystemRoot%\system32\FlagShip_console.bat optional for MS-Windows

in addition to the executable of your application and required data and other utilities like start-

up script/batch file described above in 1.2.4 as well as compiled tools, like

<FlagShip_dir>/tools/dbu/dbu[.exe]

Other data from the <FlagShip_dir> such as the compiler, static libs etc. are not transferable,

see also License Agreement in the <FlagShip_dir>/docu directory or in http://www.fship.com/

license.html and section GEN.2

For your convenience, there is a script/batch file named distribute.sh or distribute.bat

located in the <FlagShip_dir>/bin which copies the FlagShip's re-distributable files into a

directory of your choice. Simply invoke e.g.

 /usr/local/FlagShip8/bin/distribute.sh target-dir

or in MS-Windows

 "c:\FlagShip8\bin\distribute.bat" target-lw-and-dir

or correspondingly to the installed <FlagShip_dir> path.

You may then add your executable(s) and other files into this distribution directory, tar or zip

the whole directory (or create your distribution by another way like InstallShield etc).

1.2.2 Customer Settings

Your customer may copy the distributable FlagShip files (see above section) into any directory

of his choice. He only need to specify the environment variable FLAGSHIP_DIR and

FSTERMINFO pointing to this directory, e.g.

 export FLAGSHIP_DIR=/home/john/flagship_distrib
 export FSTERMINFO=$FLAGSHIP_DIR/terminfo

or in MS-Windows

 SET FLAGSHIP_DIR=c:\my\data\flagship_distrib
 SET FSTERMINFO=%FLAGSHIP_DIR%\terminfo

Other environment variables used at run-time are described in FSC.3.3 When compiled

dynamically on Unix/Linux, you will need to set/expand the LD_LIBRARY_PATH to e.g.

 LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$FLAGSHIP_DIR/lib

or create a symbolic link (as su):

 ln -s $FLAGSHIP_DIR/lib/*.so /usr/lib/.

On Unix/Linux, it is good practice to set the required terminal TERM (and other environment

variables) using e.g. a shell script named, for example, "address" which then invokes the

 SYS 11

executable named "address.out". Example of a script, invoked by "address" and located in the

current or /usr/local/bin directory. It also accepts additional command-line parameters for the

executable:

 #!/bin/sh
 # start script for address.out

 # TERM=FSansi; export TERM # Unix
 TERM=fsansi; export TERM # Linux
 # FSTERMINFO=/usr/local/FlahShip6; export FSTERMINFO #optional
 FSOUTPUT=/tmp ; export FSOUTPUT
 D_FSDRIVE=/usr/data/address/addon ; export D_FSDRIVE

 if [`expr "$PATH" : ".*/usr/bin:"` = 0]
 then
 PATH=/usr/bin:$PATH
 fi
 if [`expr "$PATH" : ".*/usr/5bin:"` = 0] # for SUN-OS only
 then # for SUN-OS only
 PATH=/usr/5bin:$PATH # for SUN-OS only
 fi # for SUN-OS only
 cd /usr/data/address # the applic home
 echo Starting the address program
 address.out $*
 echo Finished. Thank you for joining.

The above script sets all required environment variables, checks the PATH, changes to the

proper directory and executes the application. When finished, all previous settings remain

unchanged. Note, also that the script has to have an executable permission (e.g. -rwxr-xr-x),

set by chmod 755 address .

You also may invoke the "newfswin ..." or other newfs* scripts or create an extract from to set

the environment properly, see section REL.

1.3 Porting to other systems

Owning the FlagShip developer's license, you have two options for quite simply porting the

application to another operating system:

1. Purchasing another FlagShip "developer's license" for the other target system. You may

directly transfer the original *.prg or the produced *.c sources to another Unix system and

invoke FlagShip there to produce the executable.

2. Purchasing the economical "additional license" of FlagShip for any other system(s). You

may transfer the *.prg sources, or the produced *.c sources to another Unix system and

invoke FlagShip there.

All the used binary files (except *.idx, and *.o, *.a) may be transferred and re-used directly.

When the other system runs with the same processor (CPU) type, and the same Unix release,

you may be able to execute the application directly on the target, without porting it. Sometimes

SYS 12

it may be necessary to link the application with "static" instead of using the dynamic libraries.

See the compiling options in section FSC.1.3

Note: We cannot make any warranty for attempting to run an executable on a different

operating system except the one where the executable was created, since Unix differs from

one computer to the other and sometimes the libs are not fully compatible. Therefore, we

guarantee the full functionality on the same operating system with a release number which is

the same as or higher than that given on the FlagShip distribution media (see label and your

Activation Card) only. See also LNG.1.3.

 SYS 13

2. Tuning the Input/Output

2.1 GUI and Terminal i/o background

FlagShip supports three different input/output modes: GUI, Terminal and Basic i/o mode. The

resulting/used mode is specified by compiler switch (-io=g, -io=t, -io=b). If none (or -io=a) was

used, the application is created for hybrid mode, which means the currently used i/o is detected

at run-time automatically or specified by -io=g/t/b command-line switch. Refer to section FSC

for further details.

FlagShip is pre-configured for ready-to-go. The following description is meant mainly for

system administrators and for developers/users who wish to understand the background or

want to adapt the input or output to his special needs or to other national requirements.

SYS 14

2.1.1 GUI i/o mode

The GUI i/o mode apply with -io=g compiled/invoked application, or is set automatically if a

hybrid-compiled application detects MS-Windows, or X11 server in Unix/Linux.

At the system level, GUI i/o behaves very differently to plain textual input/output. Any output

is graphically drawn in application window or in it sub-windows named widgets or controls. The

used i/o character set is ISO (or Unicode). See also section LNG.5.3 and OBJ.Application

Class for further details.

 ╔═══════════╗
 ║ ║
 ║ GUI ║ ╔════════════╗
 ║ Screen ║ ║ ║
 ║ Output ║ ║ Keyboard ║
 ║ ║ ║ ║
 ╚═════╦═════╝ ╚═════╦══════╝
 ║ ║
 ┌────────────╨─────────────┐1 ┌─────────────╨────────────┐3
 │ system output tables │ │ system input, events │
 └────────────╥─────────────┘ └─────────────╥────────────┘
 ┌────────────╨─────────────┐2 ┌─────────────╨────────────┐4
 │ optional │ │ Keyboard transl.table │
 │ ASCII -> ISO translat. │ │ │
 │ FSansi2oem.def │ │ FSguikey.def │
 └────────────╥─────────────┘ └─────────────╥────────────┘
 ║ ║
 ╔════════════^═══════════════════════════════════════v════════════╗
 ║ SET SOURCE, SET GUITRANSL SET SOURCE, SET KEYTRANSL ║
 ║ ║
 ║ FlagShip application ║
 ║ running in GUI i/o mode (-io=g) ║
 ║ ║
 ║ SET DBREAD,DBWRITE,ANSI SET SOURCE ║
 ╚══════════════════╦════════════╦══════════════╦══════════════════╝
 ┌──╨────────────╨──────────────╨──┐5
 │ optional │
 │ ISO -> ASCII -> ISO translation │
 │ FSansi2oem.def │
 └──╥────────────╥──────────────╥──┘
 ║ ┌─────╨──────┐6 ║
 ║ │ FSsortab.* │ ║
 ║ └─────╥──────┘ ║
 ╔══════╩═════╗╔═════╩══════╗╔══════╩═════╗5
 ║ .dbf .dbt ║║ .idx ║║ print file ║
 ╚════════════╝╚════════════╝╚════════════╝

Notes:

1. In Unix/Linux, the X11 system tables maps/translates input and output corresponding to

settings from /etc/X11/XF86Config and ~/.Xdefaults . The output is assumed to be in ISO

character set according to LANG environment variable.

 MS-Windows uses the input and output services assigned via Control Panel -> Regional

and Language Setting -> Regional Options / Languages -> Details -> Text Services and

Input Languages / Advanced -> Language

 SYS 15

 Note: since the PC-8 semi-graphic characters for lines and boxes are not available in ISO

charset, FlagShip draws them natively when SET GUITRANSL BOX/LINES/TEXT is ON.

2. The screen output is assumed in Win/ISO character set. FlagShip will convert output

chars from ASCII to ISO automatically when SET SOURCE ASCII or SET GUITRANSL ASCII

ON is set, i.e. the u-umlaut character chr(129) sent by ?, ??, @.., Qout() etc. is displayed

as chr(252). A manual translation is available via oem2ansi() function. You may specify

your own translation table by FS_SET("ansi2oem").

3. A keyboard press sends a scan code to the system driver, which then translates it

according to the keyboard layout and language used. In Unix/Linux, the translation is

controlled by X11 setting and LANG environment, same as (1). On Linux, you may check

and set the keyboard mapping by dumpkeys, showkey, loadkeys, keymaps or xrdb, as

done in the newfs* scripts. In MS-Windows, services same as in (1) are used. A key press

results in system event, cached in FlagShip by INKEY() and associated functions.

4. The system input is usually in ISO charset, i.e. chr(252) for u-umlaut, and special codes

for function keys. Some systems also use Unicode. FlagShip checks any receiving key

press against the FSguikey.def table and if corresponding key is declared there,

translates it to expected INKEY() value. You may specify your own keyboard translation

table by FS_SET("guikeys"). An additional conversion from ISO to ASCII character set is

performed when SET SOURCE ASCII or SET KEYTRANSL TO ASCII is set.

5. If you prefer Windows/ISO editor but your database should remain DOS and Xbase

compatible (means in ASCII format), you may specify SET ANSI ON (or SET DBREAD/

DBWRITE ANSI) to translate ISO chars to ASCII sent from the application to database (i.e.

"REPLACE field with chr(252)" will store chr(129) in the database) and vice-versa for read.

The same table as in (2) is used, you may specify it by FS_SET("ansi2oem").

6. You may specify your own sorting table, used also for index sort, by FS_SET("loadlang")

and FS_SET("setlang"). See also chapter SYS.2.6

SYS 16

2.1.2 Terminal i/o mode

The Terminal i/o mode apply with -io=t compiled/invoked application, or is set automatically

when a hybrid-compiled application does not detect X11 server in Unix/Linux.

At the system level, Terminal i/o behaves differently to GUI oriented input/output. The output

on a plain console or in console-window or via remote access (ssh, telnet, terminal emulator)

contains only characters or PC-8 semi-graphic characters like lines or boxes, presumed the

used font support them. Since this is usually not the case for ISO-8859 font used in X11 console-

windows in Unix/Linux, FlagShip provides special font images containing them. By invoking

the application via "newfswin a.out -io=t" instead of "a.out -io=t" in X11 console window, these

special fonts are used automatically.

In MS-Windows, you will need to select corresponding font by Properties of the Console

window to be able to display semi-graphic characters and select also corresponding

CodePage, see below.

In Terminal i/o mode, the input/output interface is handled by standard curses library (or

ncurses, pdcurses resp.) using terminfo entries. It allows you to use or specify different kind

of terminals by setting the TERM or FSTERM environment variable (see also section FSC.4).

The terminal definitions are usually in the source file FStinfo.src (see SYS.2.2 and 2.3 for

further details). Free modifiable input and output translation tables are available as well.

 ╔═══════════╗ ╔═══════════╗
 ║ ║ ║ ║
 ║ System ║ ║ Terminal ║
 ║ Console ║ ╔════════════╗ ║ Screen ║ ╔════════════╗
 ║ Screen ║ ║ Sys.Cons. ║ ║ ║ ║ Terminal ║
 ║ ║ ║ Keyboard ║ ║ ║ ║ Keyboard ║
 ╚═════╦═════╝ ╚═════╦══════╝ ╚═════╦═════╝ ╚═════╦══════╝
 ║ ║ ║ ║
 ║ ┌─────╨──────┐1 ║ ║
 ║ │ mapkey │ ┌─────╨─────────────╨──────┐6
 ║ │ FSkeys.ger │ │ Terminal emulator │
 ║ └─────╥──────┘ └─────╥─────────────╥──────┘
 ┌─────╨─────────────╨──────┐1 ┌─────╨─────────────╨──────┐1
 │ mapchan │ │ mapchan │
 └─────╥─────────────╥──────┘ └─────╥─────────────╥──────┘
 ┌─────╨─────────────╨──────┐2 ┌─────╨─────────────╨──────┐2
 │ terminfo-description │ │ terminfo-description │
 └─────╥─────────────╥──────┘ └─────╥─────────────╥──────┘
 ┌─────╨──────┐┌─────╨──────┐3 ┌─────╨──────┐┌─────╨──────┐3
 │FSchrmap.def││FSkeymap.def│ │FSchrmap.def││FSkeymap.def│
 └─────╥──────┘└─────╥──────┘ └─────╥──────┘└─────╥──────┘
 ║ ║ ║ ║
 ╔═════^═════════════v════════════════════════^═════════════v══════╗
 ║ Curses Curses ║
 ║ FlagShip application ║
 ║ running in Terminal/Textual i/o mode (-io=t) ║
 ╚══════════════════+════════════+══════════════+══════════════════╝
 ║ ┌─────╨──────┐4 ║
 ║ │ FSsortab.* │ ║
 ║ └─────╥──────┘ ║
 ╔══════╩═════╗╔═════╩══════╗╔══════╩═════╗5
 ║ .dbf .dbt ║║ .idx ║║ print file ║
 ╚════════════╝╚════════════╝╚════════════╝

 SYS 17

Notes:

1. Unix interface. Not available on all systems mentioned, sometimes called "ttymap". See

also "Notes" for your operating system. It is sometimes recommended to disable the

character mapping from mapchan (or ttymap).

 Check also the correct tty settings using "stty -a" or set them to:

 tab3 Use spaces instead of tabs, important for background color

 -istrip Do not strip the 8th bit

 cs8 Transfer as 8-bit-character if possible. Otherwise map the 8- bit characters to 7-bit

 within FSchrmap.def

 In Linux, the keyboard mapping table is handled by "loadkeys". The output mapping

depends on the used environment character set: in graphical interface like KDE or

Gnome, usually ISO or Unicode is used.

 MS-Windows does not use modifiable drivers, but uses input and output services

assigned via Control Panel -> Regional and Language Setting -> Regional Options /

Languages -> Details -> Text Services and Input Languages / Advanced -> Language

 Note: since the PC-8 semi-graphic characters for lines and boxes are not available in

standard ISO charset used in X11 console of Unix/Linux, FlagShip uses own character

images msfg*.pcf assigned via "newfswin" or manually by "xset ...", see section REL for

details.

2. Unix terminfo interface to Curses. Definition of screen and keyboard sequences. Roughly

comparable to "user defined ANSI driver" on DOS. See more in chapters SYS.2.2 and

SYS.2.3. Refer also to (FUN) FS_SET("term") and the environment variable TERM

described in the section FSC.3.3.

 In MS-Windows, the currently set CodePage of the Command Prompt Window handles

the requested keyboard and output translation in Terminal i/o mode. It may be assigned

by "MODE CON codepage select=nnn". Display of special and national characters

depends also on used font in Window- Properties -> Font

3. FlagShip interface to Curses (FSchrmap.def and FSkeymap.def). You may redefine or

remap the output and input characters, or specify the character set. See more in chapter

SYS.2.3 and (FUN) FS_SET ("mapping", "outmap", "inmap").

4. Optional FlagShip interface (FSsortab.*): language dependant sorting and standard

output. See chapter SYS.2.6 and FS_SET ("loadlang" and "setlang").

5. Printer output. See chapters LGN.3.4, LNG.5.1.6 and the FS_SET ("print") function.

6. Probably terminal emulator software (e.g. on PC) or hardware or other graphic/user

interface (e.g. X/Open).

The environment variable TERM determines your current terminal. This variable is usually set

(and exported) within the login script /$HOME/.profile (or in /$HOME/.bash or /$HOME/.login or

/$HOME/.cshrc resp.) which corresponds to AUTOEXEC.BAT from MS-DOS.

SYS 18

You can check, set or modify this setting every time using:

 $ env
 $ printenv

 $ TERM=ansi;export TERM for Bourne and Korn-Shell, or.
 % setenv TERM ansi for C Shell

2.1.3 Basic i/o mode

The Basic i/o mode apply for application compiled or invoked with -io=b switch. It is designed

for simple i/o use, e.g. for Web/CGI applications. The output from ?, ??, @..SAY etc. is sent

to the standard stdout device, the input is read from stdin. Screen oriented output is simulated

roughly in sequential manner by CR, LF and spaces.

There are intentionally no special translation tables available here, but you may manually use

ansi2oem() or oem2ansi() functions to translate national characters between ASCII and ISO.

 SYS 19

2.2 The terminfo file

This section applies for Terminal i/o only

Each available terminal is usually described in the ASCII file /usr/lib/terminfo/terminfo.src.

After changing or modifying it as super-user, the file must be recompiled with the "tic"

program.

FlagShip supplies an extended terminfo file named FStinfo.src, including the support of

function and cursor keys etc. See chapter SYS.2.3. You may also use your default terminal

terminfo description when checking the following definitions (use the system routine "infocmp

default" or "untic" etc. to create an ASCII file for the current terminal TERM if the source is not

available):

cols# max. no. of screen columns (80)

lines# max. no. of screen rows (25)

colors# max. no. of colors (8) (*)

pairs# max. no. of color pairs (64) (*)

it# tabs step (*)

op= Sequence for standard colors

setf= Sequence for setting foreground color

setb= Sequence for setting background color

blink= Sequence for blinking on

bold= Sequence for bold (intensive) on

rev= Sequence for inverse on

smul= Sequence for underline on (*)

rmul= Sequence for underline off (*)

invis= Sequence for invisible on (*)

clear= Sequence for clear screen

ed= Sequence for clear screen from cursor

el= Sequence for clear from cursor to end of line

dch1= Sequence for clear character

ich1= Sequence for insert character

cub1= Sequence for cursor 1 character left

cuf1= Sequence for cursor 1 character right

cud1= Sequence for cursor 1 line down

cuu1= Sequence for cursor 1 line up

home= Sequence for cursor to 0,0

cup= Sequence for cursor home (*)

ind= Sequence for scroll 1 line up

ri= Sequence for scroll 1 line down

smso= Sequence for begin standard modus (1)

rmso= Sequence for end standard modus (1)

enacs= Sequence for enable altern. modus (2)

smacs= Sequence for alternate modus on (2)

SYS 20

rmacs= Sequence for alternate modus off (2)

prot= Sequence for protected modus on (3)

acsc= String vt100 compatibility modus (*)

sgr0= Sequence for clear all attributes

sgr= Sequence for set/reset attributes (1,2,3 **)

ht= Sequence for tabs in 8th step (*)

cbt= Sequence for back tab (**)

bell= Sequence for bell

kcuu1= Keyboard: cursor up

kcud1= Keyboard: cursor down

kcub1= Keyboard: cursor left

kcuf1= Keyboard: cursor right

kpp= Keyboard: page up

knp= Keyboard: page down

khome= Keyboard: home

kend= Keyboard: end

kll Keyboard: end, same as kend (+)

kich1= Keyboard: insert

kdch1= Keyboard: delete

kbs= Keyboard: backspace

ked= Keyboard: Ctrl + Home (+)

kel= Keyboard: Ctrl + End (+)

kri= Keyboard: Ctrl + PgUp (+)

kind= Keyboard: Ctrl + PgDn (+)

khts= Keyboard: Ctrl + Cursor left (+)

kctab= Keyboard: Ctrl + Cursor right (+)

kf0= Keyboard: F0 (*)

kf1..kf12 Keyboard: F1..F12 (*)

kf13..kf24 Keyboard: shift F1..F12 (*)

kf25..kf36 Keyboard: ctrl F1..F12 (*)

kf37..kf48 Keyboard: shift+ctrl F1..F12 (*)

Notes: The entries may be given in any order. Above the sorting is given in logical groups. See

more in Unix documentation: terminfo

Legend:

 (*) optional definition.

 (**) optional definition, may cause some difficulties.

 (+) extension to standard terminfo definition

 (1,2,...) see character mapping (SYS.2.4.4.c)

Notes:

sgr this sequence has higher priority than the sequences enacs, smacs, rmacs, prot, blink,

bold, rev and so on. Using the sequence mentioned above instead of "sgr" is

recommended; if you do so, mark the sgr line as comment.

sgr0 this sequence has higher priority than smso

 SYS 21

For your convenience you may also use predefined settings for the most common terminals

included in FStinfo.src (see SYS.2.3 and section REL: Predefined Terminals).

To modify a terminal description, follow these steps:

1. Run the program <FlagShip_dir>/examples/fscheck.prg to find out which entry in the

terminfo description requires modification.

2. Create a text file containing the definition. To do so, copy the delivered description

<FlagShip_dir>/terminfo/FStinfo.src, or execute untic or infocmp to create a new file:

 $ infocmp FSVT100 >myfile

3. After editing this file, use the terminfo compiler tic as super-user to activate your

modification:

 $ vi myfile

 $ su

 $ tic myfile

If changing the name of your description (i.e. when creating a new terminal description), you

may wish to define or modify a character input or output mapping for that terminal (see

SYS.2.4).

2.3 FlagShip terminal description (FStinfo.src)

This section applies for Terminal i/o inly

To support the highest level of compatibility between several terminals, FlagShip uses the

standard Unix library curses and the terminal descriptions for it, which are defined in an ASCII

file (usually terminfo.src) and compiled with tic. With FlagShip we supply a modified file called

FStinfo.src . It is installed and compiled during installation in the directory <FlagShip_dir>/

terminfo and in /usr/lib/terminfo. It contains many extended terminal descriptions (see

"Predefined Terminals" in section REL), e.g.:

FSansi, FSansi-c for ANSI terminals 80x25, color

FSansi-m for ANSI terminals 80x25, mono

FSansi-43 for ANSI terminals 80x43, color

FSAT386, FSAT386-M for ANSI terminals 80x25

FSVT100 for VT100/200/300 terminals

FSvt100-m for VT100 and VT102 terminal emulation

If you have difficulties with your standard terminal on cursor positioning, keyboard input, color

output or 8-bit character set, try to assign the above terminal using e.g.:

 $ TERM=FSansi;export TERM for Bourne and Korn shell,
 % setenv TERM FSansi for C shell

SYS 22

You may also enter this line in your login or profile script (/$HOME/.profile or /$HOME/.bashrc

or /$HOME/.login or /$HOME/.cshrc).

Note: Some Unix systems require different definitions than others, even if the same terminal

is connected. Due to these differences, not all delivered terminal descriptions can be used on

all Unix hosts without modification (see SYS.2.2).

2.4 Output mapping (FSchrmap.def)

FlagShip gives you additional features to customize your terminal output using special

"character mapping". The character equivalents for input/output and the adequate character

set is defined in an external ASCII file, so you or your customer may modify it, as required.

a. At the program beginning FlagShip looks for the file "FSchrmap.def" in the current

directory, and if not found, in all PATH directories. If the file is present, it checks the entry

for your current TERM terminal setting (such is ansi, FSansi, vt100, FSvt100 etc.). If found,

it sets this mapping automatically. Note: the file FSchrmap.def is installed into

<FlagShip_dir>/terminfo by default.

b. You may assign, disable or change this mapping during your program execution using

the function FS_SET ("mapping", filename [,terminal]).

The file containing character mappings may have any name (see above 9.2.2.b). Example of

this file:

 # Character mapping for FlagShip (1)
 (2)
 :ansi Standard PC Terminal (3)
 0: 32 1 (4)
 1-31: * 3 (5)
 32-126: * 1
 127: 32 1 (4)
 128-254: * 1
 255: 32 1
 (2)

 :FSansi|FSansi-c Standard PC Terminal (3)
 0: 32 1
 1-26: *|128 2 (5)
 27: 60 1
 28-31: * 3
 32-255: * 1
 :vt100|FSvt100|FSvt100-c std. VT100 Terminal (3)
 3-31: ...

Rules and notes, see also (no) above, for the mapping description:

1. Comment lines start with the "#" character in first column.

2. Empty lines (or spaces and tabs only) are allowed.

 SYS 23

3. Equivalent terminal to TERM environment variable. This terminal specification begins in

column 1 with ":", immediately followed by the name. You may enter more synonymous

names, which are separated with "|" (OR character, 124dec 7Chex). Additional, optional

comments begin after at least one space or tab.

4. Character description. This line must start with at least one space or tab. It contains:

 a. The decimal equivalent of the "from" character (which should be mapped), followed by

":" (58dec, 3Ahex) and at least one space or tab.

b. The decimal equivalent of the "to" character (output), followed by at least one space

or tab. If the character is identical with the "from" character, you may enter a star ("*").

Addition (+), subtraction (-), binary OR (|) or binary AND (&) with any number (1..255)

is possible.

c. Output mode:

 1 = output using standard character set

 2 = output using first alternative character set

 3 = output using second alternative character set

5. A character description for a group of characters. Similar to a one-char description (see

4), but the description contains the character group from-to (including). Enter decimal

equivalent of the start char, "-" (55dec, 2Dhex) and the decimal equivalent of the ending

character.

If the current terminal is not found in your description file, or if there is no definition for the input

character, standard mapping (see "ansi" above) is used.

Consider the difference between using the "?" or "??" to the direct positioning "@" output. The

line-output using "?" or "??" command is internally mapped for:

 07dec or 07hex bell,
 09dec or 09hex tab,
 10dec or 0Ahex line feed (LF),
 12dec or 0Bhex form feed (FF),
 13dec or 0Dhex carriage return (CR)

so that the definitions in the mapping file apply only for "@" output for above special characters.

2.5 Input mapping (FSkeymap.def)

Similar to output mapping, the keyboard may also be mapped, e.g. for transforming an ISO

character set into an ASCII PC8 set, which in FlagShip is the default to serve the program and

file compatibility to DOS.

The input mapping is done in the same way as the output mapping (see SYS.2.4), using an

external file FSkeymap.def, which is installed in <FlagShip_dir>/terminfo. To support national

7- and 8-bit keyboards as well, the following files are predefined :

 FSkeymap.def the main input mapping table

 FSkeymap.ger input mapping for German keyboards

 FSkeymap.fre input mapping for French keyboards

 FSkeymap.ita input mapping for Italian keyboards

SYS 24

 FSkeymap.spa input mapping for Spanish keyboards

 FSkeymap.uk input mapping for British keyboards

 FSkeymap.us input mapping for U.S. keyboards

When prompted, copy the selected file FSkeymap.* to FSkeymap.def. FlagShip searches for

the current terminal TERM within the FSkeymap.def as described for the output mapping.

The table structure is very similar to FSchrmap.def, except that the third parameter is omitted.

Example:

FSkeymap.def ... translate ISO to ASCII
:ISO|iso|sun|FSsun

 0 - 127 : *
 128 - 159 : *+64
 160 : 255
 161 : 173
 162 : 155
 ... etc.
 191 : 168
 192-195 : *-15
 196 : 142
 ... etc.

whereby the first number (or area) is the keyboard character input (as decimal equivalent of

it) and the second number or expression is the produced equivalence for the IBM-PC8

character set.

 SYS 25

2.6 User specific sorting (FSsortab.xxx)

In FlagShip, you may define user- or human language specific screen messages, upper/lower

translation and sorting for the commands/ functions

 INDEX on ...
 REINDEX
 SORT
 REPLACE ...
 GET...READ
 ASORT ()
 LOWER ()
 UPPER ()
 ISALPHA ()
 ISLOWER ()
 ISUPPER ()

a. The definitions are described in an ASCII file of your choice. During installation, the files

<FlagShip_dir>/terminfo/FSsortab.ger for German and <FlagShip_dir>/terminfo/

FSsortab.7bit for 7 bit output is copied for your use.

b. When required, call the function FS_SET ("loadLanguage") within your application to read

one or more language definitions, and select, enable or disable one of them with FS_SET

("setLanguage"). Please remember to use the same language definition for indexing and

SEEKing.

c. The translation will be done by FlagShip fully automatically, after it has been activated.

All tables have following entries:

 # Comment lines (1)

 (2)

 !! ALPHABET (3)

 0x00 0x00 0x00 C (4)

 :

 0x0a 0x0a 0x0a SC

 :

 'A' 'A' 'a' XAPGU (5)

 'B' 'B' 'b' XAPGU

 'C' 'C' 'c' XAPGU

 :

 !! DAYNAMES (6)

 Sunday (7)

 Monday

 :

 Saturday

 !! MONTHNAMES (8)

 January (9)

 February

SYS 26

 :

 December

 !! SCOREBOARD (10)

 insert (11)

 out of range

 invalid date

 !! DIR (12)

 Database Records Last change Size (13)

 !! LOGICAL (14)

 Yy (15)

 Nn

Rules for these tables, see also (note) mark above:

1. Comment lines begin with "#" in the first column.

2. Empty lines (or spaces and tabs only) are allowed.

3. Label for the character sort table

4. Enter all (0...255) characters in the sorting order. All entries contain 4 groups, separated

by space(s):

 a. character as decimal, octal, hex value or as 'char'

b. equivalent upper case

c. equivalent lower case

d. type of the character (printable, graphic, etc) - see your Unix documentation: CTYPE.

5. The order of entries is relevant to the sorting order (see also FSsortab.ger, where

umlauts are sorted immediately after the single letter).

6. Label for the table with names for "day-of-week".

7. Entries for this table, from "Sunday" to "Saturday", 7 lines.

8. Label for the table with names for "month-of-year"

9. Entries for this table, from "January" to "December", 12 lines.

10. Label for the table with screen headers

11. Entries for the "Insert" key, "out of range" and "invalid date" checking.

12. Label for the line with "DIR" command

13. Screen output within the "DIR" command

14. Label for allowed logical entries

15. "Yy" : keypress of "Y" or "y" is identical to "T" (true),

 "Nn" : keypress of "N" or "n" is identical to "F" (false)"

 SYS 27

2.7 Disabling the Curses initialization

In VFS6 and later, the -io= switch specifies the used i/o interface. With -io=t or -io=a (or without

-io=) switch, the curses is initialized automatically, see also source in initio.prg. When you wish

to work in basic mode (e.g. for background processing or Web application, simply use the

- io=b switch).

In FlagShip 4.48, the Curses/terminfo package (part of the Unix system lib) is initialized by

calling the CURSESINIT() function (available in source code in the <FlagShip_dir>/system/

cursinit.prg file).

During Curses initialization, the entire screen is automatically cleared by sending the

appropriate escape sequences, according to your current TERM or FSTERM environment

setting (see sect. FSC.3.3 and SYS.2).

In some circumstances, e.g. if you do not need any screen oriented input/output, or if your

application runs in background w/o screen and keyboard actions, you may completely or

partially disable Curses by modifying the cursinit.prg file. To do so, copy it to your local

directory, modify, compile according to the file header and link the cursinit.o with your

application.

The CURSESINIT() function contains following function calls:

1) fgsTakeOriginalTermio

Stores the current terminal state to reset it before leaving the application. Enabled by

default.

2) fgsInitCurses

Performs a full Curses initialization, including keyboard and screen oriented output.

Enabled by default.

3) fgsIoctl2

Performs a partial initialization of the keyboard only, instead of the full initialization.

Disabled by default.

If you disable all three calls (1, 2, 3), e.g. by placing the "*" sign in front of the CALL command,

no initialization and reset is performed. You may use only sequential output via ?, ??, QOUT()

etc, and cannot use INKEY(), WAIT, ACCEPT, READ or other input.

If you disable (2) only, no initialization is performed. You may use only sequential output

via ?, ??, QOUT() etc, and cannot use INKEY(), WAIT, ACCEPT or other input. But you may

enable the input handling by un- commenting the function call (3).

Note, that on some systems (e.g. SUN OS 4.1.x) the IOCTL invocation performed in all three

functions (1..3) will stop the process in background. In such a case, you should disable all

three calls, if running the application in background.

SYS 28

See the chapter 2.9 below for the Web use and for additional www hints.

Note: it is usually better and faster, to compile the application in Basic i/o mode using the -io=b

compiler switch instead of using the Terminal i/o mode with disabled curses for such

purposes.

2.8 Disabling Spooler File Creation

During program start-up, FlagShip creates the default printer-spooler file named

<mainmodule>.<pid> (e.g. address.1234), containing the SET PRINTER ON output, if any. This

enables you to spool the printer output in a multiuser/multitasking environment. This spooler

file is created in the local directory, or the one specified by the FSOUTPUT environment

variable. If no printer output was written into this file, it is deleted upon program termination.

See details in LNG.3.4, CMD.SET PRINTER and FUN. FS_SET("print").

On special needs, you may avoid the automatic creation of the spooler file. To do so, disable

(comment out) the statement

 CALL fgsSetSpoolOn

in the CURSESINIT() function, available in the <FlagShip_dir>/system/cursinit.prg file. Copy

this file into your local directory, make the changes, recompile and link with your application,

as described in LNG.2.7.

2.9 Using FlagShip for a Web Server

Similarly, to chapter 2.7 above, you may use FlagShip also as a database for creating dynamic

HTML pages. The only requirement in VFS is, that you compile it in Basic i/o mode (using the

-io=b switch), that's all. You preferably may use Web*() functions available in the standard

library.

In FS4.48, you will need to disable the screen initialization via CursesInit() and include

(somewhere in your application) the function Programinit() which invokes fsgUse4html. The

CursesInit() is available also in VFS for backward compatibility, but takes no effect there.

Example:

 ** listcust.prg
 parameter cCust
 field custID, address

 if empty(cCust)
 cCust := getenv("CUSTOMERID")
 if empty(cCust)
 cCust := getenv("QUERY_STRING")
 endif
 if !empty(cCust) .and. ("=" $ cCust)
 cCust := trim(substr(cCust, rat("=",cCust)+1))

 SYS 29

 endif
 endif
 nCust := val(cCust)

 dbfPath = execname(.T.)
 if rat("/", dbfPath) > 1
 dbfPath := substr(dbfPath,1,rat("/", dbfPath) -1)
 else
 dbfPath := "./cgi-bin"
 endif
 set default to (dbfPath)

 ?? "Content-Type: text/html"
 ?
 ? "<HTML>"
 ? "<HEAD><TITLE>Test Web Page</TITLE></HEAD>"
 ? "<BODY>"
 if nCust == 0
 ? "<P>*** sorry, no data without customer ID **"
 else
 ? "Listing the data for customer no. " + ltrim(str(nCust))
 ok := file("custom.dbf") .and. file("custom.idx")
 if ok
 use custom index custom shared
 ok := used() .and. !neterr()
 endif
 if !ok
 ? "<P>*** error, cannot open database or index"
 else
 seek nCust
 if !found()
 ? "<P>*** sorry, no data available for this cust no."
 else
 ? "<P>"
 while !eof() .and. custID == nCust
 ? custID, address, "
"
 skip
 enddo
 endif
 endif
 endif
 ? "<P>"
 ? "</BODY>"
 ? "</HTML>"
 ?
 quit

 // disable curses, disable start-up messages if any
 // these functions are called automatically by FlagShip on startup
 //
 FUNCTION ProgramInit()
 CALL fgsUse4html // release 4.42.0448 and newer
 RETURN NIL

 // Note: this is for backward compatibility to pre-FS5 versions.
 // Better is to compile in Basic i/o mode using the -io=b switch.

SYS 30

 //
 FUNCTION CursesInit()
 RETURN NIL

 ** eof

Additional info and examples are available in the file <FlagShip_dir>/ tools/fs4web.html or on

the Web server http://www.fship.com/fs4web.html. For your convenience, you may also use

the WebKit package available on the fship.com server. The CALL fsgUse4html in the

ProgramInit() UDF disables the output of additional Demo messages to stdscr; you may leave

it also in the application compiled by the full licensed software.

Note: for licensing purposes, the FlagShip Demo and Personal license cannot be used for by

public accessed Web pages, but for internal and test purposes only.

 SYS 31

3. Tuning the System

The Unix operating system is built on a very modular basis. The kernel of the system may be

reconfigured by the system manager (super-user or root- user) modifying the kernel variables

with "configure", "idtune" or using a system administration utility (like "sysadmsh", "sysadmin"

etc. if available).

Note for MS-DOS users: the Unix kernel is comparable to the resident part of COMMAND.COM

and the network software on DOS. Tuning the kernel parameters is comparable to (but more

powerful than) changing the CONFIG.SYS and the network configuration file, EMS/XMS memory

manager, and redefining some system commands like SHARE.

Tuning the kernel is used mostly to increase the system performance, and to set or change

user/system-wide restrictions (e.g. the RAM space and number of file or locks).

The file access time depends on the hardware used and the file system installed (the specific

file system may be twice as fast or slower than other available file systems, especially when a

high security level is used).

Since each Unix system differs slightly from all others, please refer to your system

administrator documentation for details on the kernel tuning. The following hints and

descriptions are given as a guideline only and may slightly differ from your currently used

system. Also, the listed parameters that follow are only an extract from the tunable parameters

available. The differences between SVR3 (system five release three) and SVR4 (release four)

are noted where applicable.

There are no "general" kernel settings recommended, because many parameters (RAM and

disk size, application requirements etc.) may differ from system to system even of the same

type.

The main rule is however to ensure

• enough file tables (open files per user and system wide),

• at least one shared memory segment per FlagShip application plus whatever amount of

shared memory the rest of the system requires. This should however be adequately

provided by each default/shipping setting of any machine/Unix system,

• enough RAM plus swapping space, which amounts to the total memory your application

will ever need for execution plus OS requirements,

• sufficiently large lock tables to accommodate the amount of users multiplied by the number

of simultaneously locked databases plus 10 system requirements.

SYS 32

Kernel parameters

You may check the default, minimum and maximum setting values in the /etc/conf/cf.d/mtune

file, and the current changes in the /etc/conf/cf.d/stune file. Warning: do not change the

parameters in the file directly, but use the above described system commands instead.

Whenever you change the values of kernel parameters, you must rebuild the Unix system by

the "idbuild" or "link_unix" command (or by the system administrator utility) and reboot

(shutdown) the system to make the changes effective.

Before modifying the kernel, consult your system administrator manual to find out how to bring

up the system in case the new kernel fails to boot. If necessary, create an emergency boot

floppy or tape. Most systems leave a backup copy of the current kernel somewhere on the

system. This may be used to boot using some special procedure.

Open files

The Unix operating system supports 20 to 4000 simultaneously opened files for a user (system

dependent). The defaults vary between 20 and 100 and are also system dependent. The

system shell uses three file slots itself (stdin, stdout, stderr).

If you have an application that uses more than the predefined number of files per user, or you

frequently have I/O errors when attempting to open or create a file, pay particular attention to

the parameters.

SFNOLIM Number of open files per process (SVR4). May be usually set up to 1024 (or

higher).

HFNOLIM Number of open files system-wide (SVR4). May be usually set up to 1024 (or

higher).

NOFILES Number of open files per process (SVR3). Note, that some older systems may

ignore values beyond 60 or may crash the system in some circumstances (e.g.

SCO 3.2).

NFILE Number of open files system-wide (SVR3). May be usually set up to 600 (or higher).

You may check the system tables currently used with the “sar -v” command.

In Linux, the number of currently open and max available files is handled by /proc/sys/fs/file-

nr and /proc/sys/fs/file-max (view by "cat /proc/sys/fs/file-nr" and "cat /proc/sys/

fs/file-max"), see details in "man 5 proc". You may increase the system-wide file limit by

e.g. "echo 100000 > /proc/ sys/fs/file-max"

In MS-Windows, FlagShip supports at least 2000 open files per application.

 SYS 33

Lockings

If all currently running applications exceed the predefined number of locks, you will be not able

to perform RLOCK(), FLOCK(), open a database or even invoke an application. FlagShip

requires up to 3 locks for each open .dbf, and 1 lock for each open .dbt, and .idx file. It is

therefore recommended to ensure enough locks depending on the number of open files

desired. The tunable parameter is

FLCKREC Number of locks system-wide. May be usually set to 2000 (or higher). The default

is usually between 100 and 300.

You may check the currently used locks with the “sar -v 1” command. FlagShip requires up to

3 locks for each open .dbf, and 1 lock for each open .dbt, and .idx file.

In Linux, "cat /proc/locks" shows current locks, see also "man 5 proc".

File size

The largest file size the process may write (any file size may be read) is set by following

parameters:

SFSZLIM The largest file size in bytes that the process may write (SVR4). The parameters

may be set up to 2.147.483.647 (2 GBytes) or higher, up to the disk space

available. The default is usually 8 MByte. Can be changed on-line by the system

command ulimit (sh, ksh).

HFSZLIM The maximum of SFSZLIM, system wide (SVR4).

ULIMIT The largest file size in blocks of 512 bytes that the process may write (SVR3). May

be set up to the disk space available. The default is usually set to 2.097.152 (1

GByte).

You may check the file size with the ls -l * command, the available disk space with df and the

disk space used with the du command.

In Linux and MS-Windows, FlagShip supports also files larger than 2 GB (system dependant,

usually up to 16 TB or even larger). For databases > 2GB use SET LARGEFILE ON which

however may break backward compatibility to older databases from DOS or FS4.

Buffer caching & update

The system buffers are written (flushed) frequently to the hard disk by the bdflush daemon,

according to the parameter

NAUTOUP The time in seconds for automatic system updates. The default is generally 60

seconds. Specifying a larger value increases system performance at the expense

of reliability.

SYS 34

Flushing may be forced by FlagShip's COMMIT ALL or DBCOMITALL(). In Linux, you

alternatively may invoke "sync" system command.

Processes

The Unix system processes several tasks simultaneously. Even in idle mode several tasks

(daemons) are running; see “ps -afe”. You may increase the parameters:

MAXUP Number of concurrent processes per user. The default is usually 15..60; the

maximal value is the NPROC setting.

NPROC Number of active processes system-wide. The default is usually 100..200; the

maximal value 400 and more.

NREGION Number of regions system-wide (SVR3). Most processes have three to six regions

(text, data, stack, shared memory, shared library text and data). The value should

be set according to NPROC (at least times three).

You may check the current process activity by “ps -afe” and the throughput with “sar -q”

command. In Linux, you also may use "top" or the /proc pseudo-filesystem (see "man 5 proc")

or several GUI tools. Windows displays this by "Task Manager".

Shared memory

FlagShip uses a small piece of shared memory for inter-process communication. Each

FlagShip application requires about 30 bytes of shared memory. Additional shared memory is

often used by remote processes.

SHMAX Maximum size of shared memory in bytes, system-wide. The default of 524288

is generally sufficient.

SHMNINI Number of shared memory identifiers, system-wide. The default of 100 is

generally sufficient.

XSDSEGS Number of shared memory segments (in XENIX only), system-wide. The default

value of 25 is often reached quickly. A value of 100 is generally sufficient.

XSDSSLOTS Number of shared memory slots (in XENIX only), system-wide. The default

value of 3 is generally sufficient.

Memory swapping and paging

Most current Unix systems SVR3 and up allow running a single application or the sum of all

user applications which are larger than the available RAM storage. The Unix kernel swaps a

part of currently inactive RAM storage to disk and loads another part of the program into RAM.

The internal algorithm is effective, but beyond the scope of this manual. Usually the oldest and

most infrequently used code and/or data portion is swapped out. See also the pageout or

 SYS 35

vhand daemon description in your Unix manual (available on some SVR4 systems). Some of

the swapping parameters can be changed by tuning the kernel parameters

MAXUMEM Maximum size of user's virtual memory in pages (1 KByte or 4 KByte, system

dependant). May be set up to 8192..32768 (32 MB or higher). The default is

generally set at 2560 (2 MB).

MAXSLICE Number of clock ticks for user process (SVR3). The default value is generally 60

(one second). On SVR4, the system command nice dynamically controls

program priority.

SVMMLIM Maximum addressable size of a process (SVR4) per user. Increase the default

value of 4..16 MB when running very large applications.

HVMMLIM Maximum size of a process (SVR4), system-wide.

Note: The swapping disk space is allocated during the Unix set-up process as a fixed file

system and is generally almost impossible to resize later using the swap system command.

Therefore, calculate carefully your application size and multitasking/multiprocessing

requirements, when installing the system. A very rough rule is the maximum user number

times the available (or later extended) RAM memory space.

You may check the current swapping activity with “sar -w” or “sar -q” command.

Shared applications

The Unix system loads the same application (executable) only once into the virtual memory

and uses the same code block (text segment) for all users. Only the virtual data (stack and

data segment) is allocated every time the application is invoked.

Calculating how many users may execute the same application is quite difficult and depends

on all the other processes which run simultaneously. Therefore, the following calculation can

only be used as a rule of thumb.

Steps to take:

a. Determine the size of the memory remaining when the boot process is completed. This is

available as a message somewhere at start up, and also in the file /usr/adm/hwconfig.

This is the memory actually available to the user and system processes after the kernel.

Lets call this (KM) and use kilobytes as base unit.

b. With "sar -r 1 1" on an otherwise idle running system, read out "freemem", lets call it (FM).

This is the memory in 4K blocks (SCO) still usable by user processes.

c. Now you can determine how much memory is used by the system processes. This is a

place to look in when searching for more memory. Let's call this system memory (SM).

 SM = KM - 4*FM

d. To estimate how many instances of an application can run simultaneously on a machine,

you need to determine the memory usage of the application. A combination of two

methods has to be used

SYS 36

 1. issue: "size <application_name>", you will get "text + data + bss". The "text" part in

bytes is the portion of the program which will be shared among the instances. "data +

bss" are per user requirements. However, at runtime, additional space will be

allocated.

2. To determine the current size of this space, you can use "sar" and subtract the reported

freemem from (FM), provided that this is the only additional process running. Let's call

this value application memory (AM1),

 AM1 = "new sar freemem" - FM

 or, use "ps -lp <pid_of_application>" and read off the value under the column SZ. This

is the memory occupied by the process in 4k blocks. Let's call this value (AM2).

 AM2 = "value under SZ"

 Now, the per user memory (PM) needs actually are

 PM = 4*AM1 - text/1024 in kBytes

 or PM = 4*AM2 - text/1024 in kBytes.

 These values will differ from "data + bss" and each other, and depend on what your

program has done up to the point when memory is measured.

e. Now that all parameters are known, we can calculate approximately how many users (NU)

can be fit onto our system before swapping begins, and also how many users there can

be before the absolute limit is reached. (SP) is the swap disk size in kB.

 NU = (FM - text/1024)/PM without swapping

 NU1 = (FM + SP -text/1024)/PM the limit

Example:

 Total RAM memory = 16000 kB
 SP = 32000 kB
 KM = 13000 kB (3000 kB used by kernel)
 FM = 10000 kB
 SM = 3000 kB (used by shells and system processes)

 text = 1300 kB
 data + bss = 700 kB
 AM1 = AM2 = 1000 kB --> size actually required per user
 NU = 8 users --> very realistic, machine still
 performing well
 NU1 = 40 users --> theoretic, but machine
 becomes unusable

Note1: You must take into consideration one shell per user, so the real number of application

instances will be even less.

Note2: Swapping of the data + bss sections is not so critical, since most of the text section will

still have to be maintained in memory, and the data is much smaller than the application

itself. A fast disk improves performance dramatically.

 SYS 37

Note3: Disk traffic is the most critical speed factor.

Sharing code in memory is automatic (is set by default), and is controllable with "ld" options

(- i -A -F on SCO); also usable with the FlagShip compiler option -Wc,...

SYS 38

Index

A

Application
- customizing SYS-9
- distributing SYS-9

-- script for.............................. SYS-10
- settings SYS-10

B

Background
- processing SYS-28

C

CGI use ... SYS-28
Compatibility

- data ... SYS-8
- difference

-- DOS to Unix SYS-2
-- operating system SYS-2

- source SYS-7
Curses

- disabling SYS-27
Customizing SYS-9

D

Data
- compatibility SYS-8
- sharing SYS-3

distribute.bat file SYS-10
distribute.sh file SYS-10
Distributing script SYS-10
Distributing your application SYS-9
Drive letter

- translation SYS-4

F

File
- access right SYS-6
- drive letter SYS-4
- name ... SYS-7

-- translation SYS-7
- number of SYS-4
- permission SYS-6
- sharing SYS-3

FlagShip
- distributable parts SYS-9
- porting SYS-11

FSchrmap.def file SYS-22
FSkeymap.def file SYS-23
FSsortab.def file SYS-25
FStinfo.src file SYS-19

I

Input
- tuning

-- basic i/o SYS-18
-- GUI SYS-13
-- terminal SYS-16
-- terminfo SYS-19

L

Language
- porting hints SYS-2

Localization
- tunable SYS-25

Lock
- number of SYS-4
- opportunistic SYS-6

M

Memory

 SYS 39

- swapping and paging SYS-3

N

Network
- NFS ... SYS-5
- Samba SYS-6
- topology SYS-4

NFS ... SYS-5

O

Operating system
- code sharing SYS-2
- data access SYS-3
- data sharing SYS-3
- differences SYS-2
- math coprocessor SYS-3
- memory swapping SYS-3
- tuning SYS-31

Output
- tuning

-- basic i/o SYS-18
-- GUI SYS-13
-- terminal SYS-16

P

Path

- name ... SYS-7
-- translation SYS-7

Porting hints SYS-2
Porting to other systems SYS-11
Printer

- spooler
-- disabling SYS-28

S

Samba ... SYS-6
Sorting

- user defined SYS-25
Source

- compatibility SYS-7
Spooler file

- disabling SYS-28

T

Terminfo .. SYS-19
Tuning

- input/output SYS-13
- operating system SYS-31
- terminal i/o SYS-16

W

Web use .. SYS-28

SYS 40

Notes

 SYS 41

multisoft Datentechnik
Schönaustr. 7
D-84036 Landshut

http://www.fship.com
sales@multisoft.de
support@flagship.de

	fsman_SYS_0.pdf
	Cross-Compatible to Unix, Linux and MS-Windows
	Manual release: 8.1
	Copyright
	Trademarks

	fsman_SYS.pdf
	SYS: System and Porting Hints
	1. Porting Hints
	1.1 System differences Unix and DOS
	Code sharing
	Mathematical coprocessor
	Memory swapping and paging
	Data access
	Data sharing management
	File system, drive letters
	Networking
	Permission/access rights
	File and path names
	Source compatibility
	Data compatibility

	1.2 Customizing your Application
	1.2.1 Re-distributable FlagShip Files
	1.2.2 Customer Settings
	1.3 Porting to other systems

	2. Tuning the Input/Output
	2.1 GUI and Terminal i/o background
	2.1.1 GUI i/o mode
	2.1.2 Terminal i/o mode
	2.1.3 Basic i/o mode

	2.2 The terminfo file
	2.3 FlagShip terminal description (FStinfo.src)
	2.4 Output mapping (FSchrmap.def)
	2.5 Input mapping (FSkeymap.def)

	2.6 User specific sorting (FSsortab.xxx)
	2.7 Disabling the Curses initialization
	2.8 Disabling Spooler File Creation
	2.9 Using FlagShip for a Web Server

	3. Tuning the System
	Kernel parameters
	Open files
	Lockings
	File size
	Buffer caching & update
	Processes
	Shared memory
	Memory swapping and paging
	Shared applications

	Index
	Notes

	fsman_cover_back_21x24.pdf

